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Introduction

For an arbitrary non-trivial homogeneous ideal I one defines its initial degree α(I)

as the minimal number d such that the homogeneous part of I of degree d is non-

zero. Waldschmidt, working on some problems in complex analysis, introduced the

asymptotic version of the initial degree. However the term "Waldschmidt constant"

was coined around 2010 by Dumnicki and Harbourne. The symbol α̂, as paralleling the

notation for asymptotic cohomology functions, was proposed by Szemberg. The formal

definition of the Waldschmidt constant of a homogeneous ideal in a ring of polynomials

is

α̂(I) = inf
α(I(m))

m
,

where I(m) is the m-th symbolic power of I. As already mentioned, this invariant was

studied much earlier in complex analysis in connection with higher dimensional variants

of the Schwarz Lemma. Waldschmidt constants are closely related to Seshardi constants

and thus they are expectedly difficult to compute. Around 1980 Chudnovsky stated

a conjecture predicting interesting lower bounds on the growth order of the sequence

determining the Waldschmidt constant and therefore the constant itself. Research

presented here was partly motivated by an attempt to test this conjecture for highly

symmetric configurations of points.

Thus the first purpose of this thesis is to compute the values of Waldschmidt con-

stants for some configurations of points determined by complex reflection groups. It is

expected that these values are rational and that they satisfy the Chudnovsky conjec-

ture. The computations were expected to be easier than in the general case because of

the symmetries characterizing reflection arrangements. Partial results in this direction

have been obtained recently in [2]. However, that article also shows that one needs

new arguments and ideas in this situation. For example there is only an estimate on

the Waldschmidt constant of the configuration of points in P2 determined by the Klein

arrangement (G30 in the Sheppard-Todd classification [27]) provided in [2]. Our work

shows that additional issues arise when passing from configurations in the plane to
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higher dimensional projective spaces.

Partial results on values of Waldschmidt constants of symmetric sets of points are

scattered in the literature. They concern mainly sets of points in the projective plane.

The purpose of this project was to extend the collection of available examples by

some configurations in higher dimensional projective spaces. We apply methods from

commutative algebra and algebraic geometry. Some of them have been developed in

Krakow by Dumnicki, Malara, Szemberg, Szpond and Tutaj-Gasińska, among others.

In our thesis, comprising five chapters, the first chapter introduces essential def-

initions, examples, and theorems from algebraic geometry and commutative algebra,

providing a foundational framework for subsequent discussions.

In chapter two we recall some facts about arrangements associated to finite reflection

groups. In this part we consider in particular properties of the D4 configuration from

the point of view of its Dynkin diagram.

The third section of this thesis explores fundamental properties of asymptotic in-

variants, specifically, Waldschmidt constants and resurgences, offering a comprehensive

analysis of available tool allowing their study.

The Waldschmidt constants of symmetric sets of points in projective spaces are the

core of chapter four. In particular, we compute the values of Waldschmidt constants

for configurations of points determined by some complex reflection groups. We focus

on H3, D4, B4, F4 and H4 root systems.

In the fifth chapter, we shift our focus to the properties of general projections of

symmetric sets of points in projective spaces. We specifically investigate the geproci

property, which denotes sets projecting to complete intersection sets of points in the

projective plane. Our study centers on the H4 configuration of points from this per-

spective, revealing its geproci nature despite not fitting the grid or half-grid categories.

It’s worth noting that there are currently only three known examples of such geproci

sets.

In the Appendix we present some Singular – symbolic algebra program [11] code

used to estimate the Waldschmidt constant of the aforementioned configurations. We

hope it might be of more general interest, as it can be easily adapted to other config-

urations of points.

Some additional short Singular scripts are included directly in the appropriate spots

of the main text.
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Wstęp

Dla dowolnego nietrywialnego jednorodnego ideału I definiuje się jego stopień początkowy

α(I) jako minimalną liczbę d taką, że jednorodna część I stopnia d jest niezerowa.

Waldschmidt, pracując nad niektórymi problemami analizy zespolonej, wprowadził

asymptotyczną wersję stopnia początkowego.

Sam termin „stała Waldschmidta” został wprowadzony w 2010 roku przez Dum-

nickiego i Harbourna. Samo oznaczenie α̂ zostało zaproponowane przez Szemberga.

Formalna definicja stałej Waldschmidta wygląda następująco:

Niech dany będzie ideał jednorodny I. Stałą Waldschmidta nazywamy liczbę

rzeczywistą

α̂(I) = inf
α(I(m))

m
,

gdzie I(m) oznacza m-tą potęgę symboliczną I.
Jak już wspomniano, niezmiennik ten był badany znacznie wcześniej w analizie ze-

spolonej. Stałe Waldschmidta są blisko spokrewnione ze stałymi Seshardiego i dlatego

należy się spodziewać, że ich obliczenie jest bardzo trudne. Około 1980 roku Chud-

novsky postawił hipotezę dotyczącą stałej Waldschmidta. Zaprezentowane w niniejszej

pracy doktorskiej badania były częściowo motywowane próbą sprawdzenia tej hipotezy

dla wysoce symetrycznych konfiguracji punktów.

Jednym z celów rozprawy doktorskiej było obliczenie wartości stałej Waldschmidta

dla niektórych konfiguracji punktów wyznaczonych przez zespolone grupy odbić. Postaw-

iono hipotezę roboczą, że wartości te są wymierne i spełniają hipotezę Chudnowskiego.

Obliczenia powinny być łatwiejsze niż w przypadku ogólnym ze względu na symetrie

charakteryzujące układy odbić. Częściowe wyniki w tym kierunku uzyskano niedawno

w [2]. Artykuł ten pokazuje jednak także, że w tej sytuacji potrzebne są nowe ar-

gumenty i pomysły. Na przykład istnieje jedynie oszacowanie stałej Waldschmidta

układu Kleina (G30 w klasyfikacji Shepparda-Todda [27]) podane w [2]. Okazuje się,

że dodatkowe problemy pojawiają się przy przejściu od konfiguracji na płaszczyźnie do

konfiguracji w wyżej wymiarowych przestrzeniach rzutowych.
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Kolejnym celem tej pracy było zebranie wiedzy, analiza metod, opracowanie nowych

podejść i usystematyzowanie (lub uzupełnienie) wiedzy na temat asymptotycznych

niezmienników. Zastosowano metody z algebry przemiennej i geometrii algebraicznej.

Niektóre z nich zostały opracowane prez grupę działającą w Krakowie, do której należą

m.in. Dumnicki, Malara, Szemberg, Szpond i Tutaj-Gasińska.

Niniejsza rozprawa złożona jest z pięciu rozdziałów.

W pierwszym rozdziale przedstawiamy kilka podstawowych definicji, przykładów

i twierdzeń z geometrii algebraicznej i algebry przemiennej, które są niezbędne do

dalszych rozważań.

W rozdziale drugim przypominamy pewne fakty dotyczące skończonych grup odbić.

W tej części rozważymy własności konfiguracji D4 (diagram Dynkina).

Trzecia część pracy doktorskiej polega na opisaniu niezmienników asymptotycznych,

takich jak: stała Waldschmidta i resurgencja.

W rozdziale czwartym opisujemy stałą Waldschmidta symetrycznych układów punk-

tów w przestrzeniach rzutowych oraz podajemy dowody teoretyczne.

W rozdziale piątym, przedstawiamy własności rzutów ogólnych symetrycznych zbiorów

punktów w przestrzeniach rzutowych dla konfiguracji H4.

Na końcu pracy, przedstawiamy kod programu w języku Singular [11] używany do

wyliczenia stałej Waldschmidta dla rozważanych konfiguracji.

Niektóre dodatkowe krótkie kody programów są zawarte bezpośrednio w odpowied-

nich rozdziałach.
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1 Preliminaries

The purpose of this chapter is to present some basic definitions, examples and theorems

from algebraic geometry and commutative algebra.

Let R = K[x0, . . . , xN ] be the ring of polynomials over a field K. Many statements

made below are valid for arbitrary fields, some only for algebraically closed fields. In

order to avoid confusion, we adopt the later assumption for the whole work.

The ring R has a natural graded structure

R =
⊕
d>0

Rd

given by degree of its homogeneous elements. For a given integer k ≥ 0 we will denote

by R(−k) the ring R with grading shifted by k, i.e., R(−k)d = Rd−k for all d ≥ 0.

The traditional objects of study are homogeneous ideals I, which are algebraic

objects and on the other hand, sets of zeros of systems of polynomial equations, which

are geometric objects, denoted by V (I). In our case, the ring of polynomials, which

we consider, is Noetherian, so each algebraic set is described by a finite number of

equations. When I is a principal ideal (generated by a unique polynomial), then we

call V (I) a hypersurface (the zero set of the generator of I). If the generator has

degree one, then we speak about a hyperplane.

Definition 1.1 (Hyperplane)

A hyperplane is a set of solutions to a linear equation in PN .

The same subset of the projective plane can be described by different ideals, for example

if we consider the point (0, 0) in the affine plane, then its maximal ideal is I = 〈x, y〉,
but J = 〈x3, y2〉 still describes the same point as a set, equipped however with a

different algebraic structure. We are interested in the largest set of equations that

describes a given set. This leads us to the definition of the radical of an ideal.

Definition 1.2 (Radical of an ideal)

Let I be an ideal of R. We define the radical
√
I of I as the set
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√
I =

{
r ∈ R : ∃ n∈N>1

rn ∈ I
}
.

It is easy to see, that the radical of an ideal is also an ideal. We say that the ideal

I is radical if I =
√
I.

Remark 1.3

For every ideal we have:

1. I ⊂
√
I;

2.
√√
I =
√
I.

Thus taking the radical can be viewed as an algebraic operation which parallels taking

the closure of a set in topology.

Now let us present an example.

Example 1.4

Let I = 〈x20 + 3x0x1, 3x0x1 + x21〉 ⊆ C[x0, x1]. Note that
√
I = 〈x0, x1〉 and we have

x0 + x1 ∈
√
〈x20 + 3x0x1, 3x0x1 + x21〉. Indeed

(x0+x1)
3 = x30+3x20x1+3x0x

2
1+x

3
1 = x0(x

2
0+3x0x1)+x1(x

2
1+3x0x1) ∈ 〈x20+3x0x1, 3x0x1+x

2
1〉.

Since every generator of I is of degree two and homogeneous, then

x0 + x1 /∈ 〈x20 + 3x0x1, 3x0x1 + x21〉.

It means that I is not a radical ideal.

Now we present a very important theorem which describes relationship between

ideals and geometric objects [10].

Theorem 1.5 (Nullstellensatz )

Let I ⊆ K[x0, . . . , xN ] be an ideal, where K is an algebraically closed field, then

I(V (I)) =
√
I.

Remark 1.6

We observe for further reference that

I(X1 ∪X2) = I(X1) ∩ I(X2).

Definition 1.7 (Initial degree)

For an arbitrary non-trivial homogeneous ideal I ⊂ R one defines its initial degree

α(I) as the minimal d such that the homogeneous part Id of degree d is non-zero. We

have

α(I) := min{deg f : 0 6≡ f ∈ I}.

14



The initial degree is an important invariant of an ideal. We introduce its asymptotic

counterpart in Definition 3.1.

1.1 Symbolic powers of homogeneous ideals

Definition 1.8 (Primary ideal)

A proper ideal Q ⊂ R is called primary, if every zero-divisor in the quotient ring R/Q

is nilpotent.

Remark 1.9

The radical P =
√
Q of a primary ideal Q is a prime ideal. We say that Q is P -primary.

An important result of Lasker and Noether identifies primary ideals as building blocks

of all ideals in noetherian rings. More precisely we have the following theorem, see

Chapter 3 in [15].

Theorem 1.10 (Lasker-Noether)

Any non-trivial homogeneous ideal I ⊂ R has a unique minimal (in the sense of inclu-

sions) primary decomposition

I = Q1 ∩ · · · ∩Qs,

where Qi are primary ideals.

Definition 1.11 (Associated primes)

Let I be a proper ideal of a noetherian ring R and let

I = Q1 ∩ · · · ∩Qs

be its minimal primary decomposition with Pi =
√
Qi for i = 1, . . . , s. Then

Ass(I) = {P1, . . . , Ps}

is the set of associated primes of I.

Definition 1.12 (Symbolic power)

Let I ⊂ R = K[x0, . . . , xN ] be a homogeneous ideal. For a positive integer m, we define

the m-th symbolic power of I, as

I(m) =
⋂

p∈Ass(I)

(ImRp ∩R),

where Ass(I) is the set of associated primes of I and Rp is the localization of R at p.

15



In case K is an algebraically closed field symbolic power has a clear geometrical inter-

pretation.

Theorem 1.13 (Nagata-Zariski)

Let I ⊂ K[x0, . . . , xN ] be a radical ideal and let V (I) be the set of zeros. Then elements

of I(m) are all polynomials vanishing along V (I) with multiplicity at least m.

In case of points, which are the main object of our interest, symbolic powers of their

ideals have a particularly nice form.

Remark 1.14 (Symbolic powers of points)

Let Z = {P1, . . . , Ps} be a finite set of points in PN . By Remark 1.6 we have

I(Z) = I(P1) ∩ · · · ∩ I(Ps),

where I(Pi) is the ideal of polynomials which vanish at the point Pi.

For m > 1, by Theorem 1.13, the symbolic power I(Z)(m) of the ideal I(Z) is

computed as

I(Z)(m) = I(P1)
m ∩ · · · ∩ I(Ps)

m.

Example 1.15

Consider 3 non-collinear points in P2. Without loss of generality we can assume that

their coordinates are:

P1 = [1 : 0 : 0] , P2 = [0 : 1 : 0] , P3 = [0 : 0 : 1] .

Then for:

1. m = 1, we obtain I = I(P1)∩I(P2)∩I(P3) = 〈y, z〉∩〈x, z〉∩〈x, y〉 = 〈yz, xz, xy〉;

2. m = 2, we obtain I(2) = I(P1)
2 ∩ I(P2)

2 ∩ I(P3)
2 = 〈y, z〉2 ∩ 〈x, z〉2 ∩ 〈x, y〉2 =

〈z2, yz, y2〉 ∩ 〈z2, xz, x2〉 ∩ 〈y2, xy, x2〉 = 〈xyz, x2y2, x2z2, y2z2〉;

3. m = 3, we obtain I(3) = I(P1)
3 ∩ I(P2)

3 ∩ I(P3)
3 =

= 〈xy2z2, x2yz2, x2y2z, y3z3, x3z3, x3y3〉.

Definition 1.16 (Fat point)

For m ≥ 2, a fat point mP is a scheme supported on a point P , whose structure is

defined by I(P )m.

16



Definition 1.17 (Fat point scheme)

Let m1, . . . ,ms be positive integers. We say that Z = m1P1 + · · ·+msPs is a fat points

scheme its ideal is

I(Z) =
s⋂
i=1

I(Pi)
mi .

For fat point schemes there is a statement which parallels Remark 1.14.

Remark 1.18 (Symbolic powers of fat point schemes)

Let I(Z) = I(P1)
m1 ∩ · · · ∩ I(Ps)

ms , then the m−th symbolic power of I(Z) is given

by:

I(Z)(m) = I(P1)
mm1 ∩ · · · ∩ I(Ps)

mms .

1.2 Resolution of homogeneous ideals

We assume here for simplicity that R is the ring of complex polynomials and all ideals

studied here are homogeneous.

The ring of polynomials is noetherian (by Hilbert’s basis theorem), i.e., any ideal

I ⊂ R is finitely generated. This property is equivalent to the existence of a surjective

morphism of graded R-modules

k⊕
i=1

R(−ai)→ I → 0.

It is an intriguing question to find the simplest set of generators and also the simplest

set of relations between them (syzygies). The simplicity is measured by the cardinality

of the set of generators.

Definition 1.19 (Minimal set of generators of I)
We say that a set {g1, g2, . . . , gk} is a minimal set of generators of I ⊂ R if this set

generates I and no proper subset of this set has this property.

Generators of an ideal deliver, in principle, all information about the structure of the

ideal but it is somehow concealed by relations between them. Around 1890 Hilbert,

building upon earlier works of Cayley, put forward the concept of free resolutions.

Before we define it we need to make a convention.

Notation 1.20

To fix the notation we adopt convention that a matrix operates on a vector (represented

by a column of coordinates) by multiplying from the left as in the example below. For

17



A =

a11 a12 a13

a21 a22 a23

 and v =


v1

v2

v3

 we have

a11 a12 a13

a21 a22 a23

 ·

v1

v2

v3

 =

a11 · v1 + a12 · v2 + a13 · v3
a21 · v1 + a22 · v2 + a23 · v3

 .
Definition 1.21 (Free resolution)

Let I ⊂ R be a homogeneous ideal. A free resolution of I is an exact sequence of the

form

0→
⊕
mn

R(−anmn)
An−→ . . .

A2−→
⊕
m1

R(−a1m1)
A1−→
⊕
m0

R(−a0m0)→ I → 0,

where Ai are matrices whose entries are elements of R.

The finiteness of the resolution follows from Hilbert’s Syzygy Theorem. A proper ideal

has many different free resolutions. Among them one can distinguish the minimal ones.

Definition 1.22 (Minimal free resolution of I)
We say that a graded free resolution is a minimal graded free resolution of I if no

elements invertible in R (non-zero scalars in our case) appear as entries in matrices Ai.

There is an important invariant associated to free resolutions.

Definition 1.23 (Castelnuovo-Mumford regularity)

Let I ⊂ R be an ideal I with a minimal free resolution given by

0→
⊕
mn

R(−anmn)→ · · · →
⊕
m1

R(−a1m1)→
⊕
m0

R(−a0m0)→ I → 0.

The Castelnuovo-Mumford regularity reg(I) of an ideal I is the number

reg(I) := max
k,m
{akm − k}.

Remark 1.24

The number reg(I) can be considered as a way to measure the complication of the

ideal. Note that reg(I) is at least equal to the highest degree generator of I in a

minimal set of generators.

If I is generated in a single degree d and the regularity is d, then we speak about

a linear resolution of I. It is the simplest situation for non-trivial ideals; all entries in

matrices Ai are either 0 or linear forms.
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Example 1.25

Considering the points

P1 = [1 : 0 : 0] , P2 = [0 : 1 : 0] , P3 = [0 : 0 : 1] .

from the previous Example 1.15. Then for

1. m = 1 and I = 〈yz, xz, xy〉 the minimal free resolution is

0→ R2(−3)

−x y 0

−x 0 z


T

−−−−−−−−−→ R3(−2)

[
yz xz xy

]
−−−−−−−−−→ I → 0.

This implies

reg(I) = max{2− 0, 3− 1} = 2.

2. m = 2 and I(2) = 〈xyz, x2y2, x2z2, y2z2〉 the minimal free resolution is

0→ R3(−5)


−yz x 0 0

−xz 0 y 0

−xy 0 0 z



T

−−−−−−−−−−−−→ R(−3)⊕R3(−4)

[
xyz x2y2 x2z2 y2z2

]
−−−−−−−−−−−−−−−−→ I → 0.

This implies

reg(I(2)) = max{3− 0, 4− 0, 5− 1} = 4.

3. m = 3 and I(3) = 〈xy2z2, x2yz2, x2y2z, y3z3, x3z3, x3y3〉 the minimal free resolu-

tion is

0→ R2(−6)⊕R3(−7)



−x y 0 0 0 0

−x 0 z 0 0 0

−yz 0 0 x 0 0

0 −xz 0 0 y 0

0 0 −xy 0 0 z



T

−−−−−−−−−−−−−−−−−−−−→

R3(−5)⊕R3(−6)

[
xy2z2 x2yz2 x2y2z y3z3 x3z3 x3y3

]
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ I → 0.

This implies

reg(I(3)) = max{5− 0, 6− 0, 6− 1, 7− 1} = 6.
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We enclose here a short program in Singular [11], which can be used to verify quickly

above claims.

LIB "primdec.lib";

option(redSB);

ring r=0,(x,y,z),dp;

proc function_of_Hilbert(poly a, poly b, poly c){

maxideal(3);

ideal I = a,b,c;

return(size(NF(maxideal(5),std(I))));

}

ideal I;

I= y*z, x*z , x*y;

print("Regularity: " + string(regularity(mres(I, 0))));

resolution rs= res(I,0);

rs;

print(betti(rs), "betti");

print(matrix(rs[2]));

Output:

Regularity: 2

1 3 2

r < −− r < −− r

0 1 2

,

0 1 2

0 : 1 − −
1 : − 3 2

total : 1 3 2

,


−x −x
y 0

0 z

 .

1.3 Intersection theory and the Theorem of Bezout

In this section we recall basic notions and properties relevant in the subsequent parts

of this work.

Definition 1.26 (Multiplicity at a point)

We say that a homogeneous polynomial f(x0, x1, . . . , xN) vanishes to order k at a point
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P = (p0 : p1 : · · · : pN), if

∂k−1f

∂xi00 ∂x
i1
1 . . . ∂x

iN
N

(p0 : p1 : · · · : pN) = 0,

for all i0, . . . , iN such that i0 + i1 + · · · + iN = k − 1, but for some a0, a1, . . . , aN ∈ N

such as a0 + a1 + · · ·+ aN = k

∂kf

∂xa00 ∂x
a1
1 · · · ∂x

aN
N

(p0 : p1 : · · · : pN) 6= 0.

We denote the multiplicity of f at the point P by mP (f).

If H is the hypersurface defined by the vanishing of f , by a slight abuse of notation,

we denote its multiplicity at a point P bymP (H) rather thanmP (f). This is convenient

if we have a hypersurface and we are not interested in its equation. In the next

Definition we actually use the convenience of denoting a hypersurface (a curve in that

instance) and its equation by the same letter.

Next we recall the definition of the local intersection of two algebraic curves. This is a

central object in our applications, see [19].

Definition 1.27 (Intersection numbers of curves C and D)
For all curves C and D in P2 and all points P ∈ P2 We define the local intersection

numbers of calc and D at P as numbers I(P, C∩D) (possible equal to infinity), subject

to the following conditions:

1. If curves C and D have no common components at P then I(P, C ∩ D)0 is a

non-negative integer. Otherwise I(P, C ∩ D) =∞.

2. A point P /∈ C ∩ D if and only if I(P, C ∩ D) = 0.

3. If T is a linear change of coordinates in P2, then

I(P, C ∩ D) = I(T (P ), T (C) ∩ T (D)).

4. I(P, C ∩ D) = I(P,D ∩ C).

5. There is I(P, C ∩ D) > mP (C) · mP (D). The equality holds if and only if the

curves C and D have no common tangent line at the point P .

6. Let Ci and Dj be polynomials such that C =
∏

i C
ri
i and D =

∏
j D

sj
j , then we

have

I(P, C ∩ D) = I(P,
∏
i

Crii ∩
∏
j

Dsjj ) =
∑
i,j

risjI(P, Ci ∩ Dj).
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7. I(P, C ∩ D)) = I(P, C ∩ (D + f · C)), for any f ∈ K[x0, x1, x2].

Theorem 1.28 (Fulton)

There exist unique numbers I(P, C ∩ D) satisfying all conditions in Definition 1.27.

Proof. For a proof we refer to [19] (Section 3.3, Theorem 3). �

Two comments are in place. First we address the computability of the introduced

invariants.

Remark 1.29

Definition 1.27 and Theorem 1.28 secure the existence of the local intersection numbers

but are not constructive in the sense that they don’t provide a direct way of computing

these numbers. To this end one can use resultants as described in [21].

The next comment concerns local intersection numbers between higher dimensional

objects of complementary dimensions. They can be defined in a similar manner and a

generalized Bezout’s theorem holds also in this case, see [18] for details.

Rather than dwelling on the general intersection theory let us present the most

important for us result involving local intersection numbers.

Theorem 1.30 (Bezout)

Let C and D be curves in P2(C) of degree m and n respectively. Assume that C and D
have no common components. Then

(deg(C))(deg(D)) =
∑

P∈C∩D

I(P, C ∩ D) = m · n.

Proof. See [19] (Section 5.3). �

Example 1.31

Let L be a line and C a conic defined over an algebraically closed field. There are two

situations possible:

a) L ∩ C = {P},

b) L ∩ C = {Q,R}.

Then it is I(P,L∩C) = 2 in a), whereas I(Q,L∩C) = I(R,L∩C) = 1 in b). This

is illustrated in the next two figures.
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P

Figure 1.1: a) one point of multiplicity 2

Q

R

Figure 1.2: b) two points of multiplicity 1
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2 Complex reflection groups

In this section we will recall some basic facts about arrangements associated to finite

reflection groups.

Definition 2.1 (Group action)

Let X be a nonempty set and let (G, ?) be a group. A (left) group action of G on X

is a map G×X → X, given by (g, x) 7→ g · x such that

1. for the neutral element e ∈ G there is e · x = x for all x ∈ X;

2. (g1 ? g2) · x = g1 · (g2 · x) for all x ∈ X and g1, g2 ∈ G.

Definition 2.2 (Orbit)

The orbit of an element x ∈ X is the set of all these elements y ∈ X such that y = gx

for some g ∈ G. We write O(x) = {y ∈ X : y = g · x} = {g · x, g ∈ G}.

Definition 2.3 (Fixed point)

We say point x ∈ X is a fixed point of f : X → X, if

f(x) = x.

More generally x is fixed point of a group action if f(x) = x for all f ∈ G. In

particular a fixed point has an orbit consisting just of that point.

We denote the set of fixed points of f by Fix(f).

In this part we consider only K = C so here R = C[x0, . . . , xN ]. Let V be the vector

space CN+1 with coordinates x0, . . . , xN .

Example 2.4

For R and a finite group G of linear automorphisms of the vector space V we have that

G acts on R so that g · f is defined by

(g · f)(x) = f(g−1(x)), for all x ∈ V,

where f ∈ R and g ∈ G.
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Definition 2.5 (Invariant polynomial)

Let V be the vector space as above and let G be a finite subgroup of GL(V ) acting on

the ring of polynomials R. We say that f ∈ R is an invariant polynomial with respect

to the action of G if

(g · f)(x) = f(x),

for all g ∈ G and x ∈ V .

In other words, an invariant polynomial is a fixed point of the action of G on R.

Example 2.6

Let G = {id,−id}, then G acts on R in the following way

1. for g = id this is a trivial case, g · f = f for all f ∈ R;

2. for g = −id we have (g · f)(x) = f(−x).

Thus a general polynomial f ∈ R has an orbit consisting of 2 elements: f(x), f(−x).

But an even polynomial, i.e., a polynomial f such the f(x) = f(−x) for all x ∈ V ,

has an orbit consisting only of one element. So, in particular, in this case every even

polynomial is invariant under G and vice versa.

Definition 2.7 (Order of a matrix)

We say that a matrix A has order k, if k is the minimal number with the property

Ak = id.

Thus if a matrix has an order then it is in particular invertible. Of course there are

invertible matrices which don’t have a finite order.

Example 2.8

Let R = C[x0, . . . , xN ] and G = {id, g′} ⊂ GL(V ), where g′ is defined as follows

g′(x0, x1, . . . , xN) = (−x0, x1, . . . , xN).

The automorphism g′ is represented by the following associated (N + 1) × (N + 1)

matrix 
−1 0 . . . 0

0 1 . . . 0
...

... . . . ...

0 0 . . . 1

 .

From the above form of the matrix we can see that g′ has order 2 and exactly N

eigenvalues equal to 1.
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Consider symmetric polynomials

f1 := x0 · · ·xN , f2 := x0 + · · ·+ xN .

Then

• O(f1) = {f ∈ R : f = gf1 for g ∈ G} = {f1,−f1},

• O(f2) = {x0 + · · ·+ xN ,−x0 + · · ·+ xN}.

Invariant polynomials f ∈ R are those, which belong to C[x20, x1, . . . , xN ].

In this part, we define reflections and reflection groups based on [24].

Definition 2.9 (Reflection)

A reflection in CN+1 is a linear automorphism of finite order which has exactly N

eigenvalues equal to 1.

The finite order of a reflection forces its remaining eigenvalue to be a root of unity.

Definition 2.10 (Reflection group)

We say that G ⊆ GL(V ) is a reflection group if it is generated by reflections.

In the historical context the complex reflection groups were considered as the first.

Remark 2.11

If s is a reflection, then the set Fix(s) is a hyperplane, called the reflecting hyperplane

of s.

Example 2.12

Define a set of automorphisms of V , by:

si : (x0, x1, . . . , xN) 7−→ (εik · x0, x1, . . . , xN),

where εk is a primitive root of unity of order k, then {si}i∈{1,...,k} form a reflection

group. It is in this case a cyclic group of order k.

Remark 2.13

Given a reflection of order k ≥ 2, by [24] there exists a primitive root of unity ε of

order k and a point a ∈ V such that s = sa,ε and

sa,ε(x) = x− (1− ε)< x, a >

< a, a >
a.

The next two definitions are based on [24].
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Definition 2.14 (Reflection arrangement)

A reflection arrangement is a hyperplane arrangementH(G) which consists of reflection

hyperplanes defined by reflections in a finite reflection group G.

Definition 2.15 (Irreducible group)

A complex reflection group G ⊂ GL(V ) is called irreducible if there is no non-trivial

invariant proper subspace of V invariant under G.

Example 2.16 (Monomial groups)

Let ΣN+1 ⊂ GL(V ) be the group of all (N + 1)× (N + 1) permutation matrices. It is

of course isomorphic with the permutation group SN+1 of (N + 1) elements. Let n ≥ 2

and p ≥ 1 be integers with p|n and let A(n, p,N + 1) be the group of (N + 1)× (N + 1)

diagonal matrices A = (aij)i,j∈[N+1] with aij = εαiδij, where ε is a primitive root of

unity of order n, αi ∈ {1, ..., n} and such the product

det(A) =
∏

i∈[N+1]

aii

is a power of εp. Let G(n, p,N + 1) be the semi-direct product of A(n, p,N + 1) and

ΠN+1. Then G(n, p,N + 1) is an irreducible complex reflection group.

In the mid of 20th century, Shephard and Todd [27] classified finite complex reflection

groups. In brief they found that every irreducible complex reflection group is either one

of G(n, p,N + 1) (denoted in the literature also as G(m, p, n)) or one of 34 exceptional

examples denoted traditionally by Gi with i = 4, . . . , 37.

Example 2.17

Consider 3 non-collinear points in P2:

P1 = [1 : 0 : 0] , P2 = [0 : 1 : 0] , P3 = [0 : 0 : 1] .

This situation is visualized at figure:
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x z

y

[0 : 1 : 0]

[0 : 0 : 1] [1 : 0 : 0]

Figure 2.1: Configuration of 3 non-collinear in P2

Let us begin with an example of the reflection Sy, which corresponds to the hyper-

plane x− z = 0. As a map we have Sy : [x : y : z] −→ [z : y : x].

[0 : 1 : 0]

[0 : 0 : 1] [1 : 0 : 0]

x

y

z

x = z

Figure 2.2: Reflection

When we consider Sz, which corresponds to the hyperplane y − x = 0, we obtain

Sz : [x : y : z] −→ [y : x : z]. And the last reflection is Sx, which corresponds to

equation y − z = 0. We obtain that Sx : [x : y : z] −→ [x : z : y].

If we consider Sy ◦ Sy, then we get identity. The same holds for Sx ◦ Sx and for

Sz ◦ Sz.
We can take composition of two different reflections. For example Sa = Sx ◦ Sy

then we obtain that [x : y : z] −→ [z : y : x] −→ [z : x : y]. This transformation is
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represented by the matrix

Sa =


0 0 1

1 0 0

0 1 0

 .

It is easy to see that the eigenvalues of this matrix are 1, −1+
√
3i

2
and −1−

√
3i

2
, so that

in particular this transformation is not a reflection.

Similarly, for Sb = Sy ◦ Sx, then we obtain that [x : y : z] −→ [x : z : y] −→ [y : z :

x]. So that in particular Sy ◦ Sx 6= Sx ◦ Sy.
Taking Sy ◦ Sx ◦ Sy we get

[x : y : z] −→ [z : y : x] −→ [z : x : y] −→ [y : x : z],

but it is Sz.

Finally, when we consider all possible compositions, we obtain 6 transformation: the

3 reflections: Sx, Sy, Sz and the three non-reflections Id, Sa : [x : y : z] −→ [z : x : y]

and Sb : [x : y : z] −→ [y : z : x].

We enclose here a program that calculates the group generated by Sx, Sy and Sz
using the Reynolds operator.

LIB "finvar.lib";

ring R=0,(x,y,z),dp;

//S_x

matrix A[3][3]=1,0,0, 0,0,1, 0,1,0;

//S_y

matrix B[3][3]=0,0,1, 0,1,0, 1,0,0;

//S_z

matrix C[3][3]=0,1,0, 1,0,0, 0,0,1;

list L=group_reynolds(A,B,C);

print(L[1]);

Output:

Sx : [x z y], Sy : [z y x], Sz : [y x z], id : [x y z], Sa : [y z x], Sb : [z x y].

These 6 elements form the permutation group S3.
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2.1 Root systems

We present here some necessary definitions for further consideration in this and the

following chapters, consult [9] and also [28] for more details.

Definition 2.18 (Root system)

A root system ∆ is a finite set of vectors in an affine space V (in our case it will be R3)

such that

• the elements in ∆ span V ;

• for each a ∈ ∆, the vector −a is also in ∆ and no other multiple of a is there;

• for each a and b in ∆, the vector sa(b) is also in ∆ (here sa(υ) = υ − 2 〈a,υ〉〈a,a〉a is

the image of υ under the reflection in the hyperplane perpendicular to a);

• for each a and b in ∆, the number 2 〈a,b〉〈a,a〉 is an integer.

Each element of ∆ is called a root.

Definition 2.19 (Simple roots)

Let ∆ be a root system in an affine space V , then Σ ⊂ ∆ is a fundamental system of ∆ if

it is linearly independent and every element of ∆ can be written as a linear combination

of elements of Σ such that all coefficients are either nonnegative or nonpositive.

The elements of Σ are called simple roots.

Theorem 2.20 (Existence of a fundamental system)

Every root system has a fundamental system.

Definition 2.21 (Equivalence of root systems)

Let ∆ ⊂ V and ∆′ ⊂ V ′ be root systems. We say that ∆ and ∆′ are isomorphic if

there exists a linear map f : V → V ′, satisfying the following conditions:

• f(∆) = ∆′;

• ∀a, b ∈ ∆ we have 〈f(a), f(b)〉 = 〈a, b〉.

Now we pass to the construction of a graph theoretical object called a Dynkin diagram

associated to a root system.

Definition 2.22 (Dynkin diagram)

A Dynkin diagram of a root systen ∆ is a graph constructed according to the following

rules:
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• we choose a set of simple roots Σ from ∆, which are then in a 1 : 1 correspondence

with the vertices of the graph;

• to any two distinct roots a 6= b ∈ Σ we assign 0, 1, 2 or 3 edges between the graph

vertices corresponding to them depending on the angles (in the affine space)

between the roots:

0 0
π

2
If the angle between two roots is equal to π

2
, we don’t join vertices by an edge.

0− 0
2π

3
If the angle between two roots is equal to 2π

3
, we join vertices by one edge.

0 = 0
3π

4
If the angle between two roots is equal to 3π

4
, we join vertices by two edges.

0 ≡ 0
5π

6
If the angle between two roots is equal to 5π

6
, we join vertices by three edges.

• if there is an edge between two vertices a and b, we consider additionally the

length of the corresponding roots and decorate the edge with an arrow pointing

from a to b iff ‖a‖ > ‖b‖. For example:

a b a b
or

2.2 The D4 Configuration

Now we are in the position to study a first root system and its associated points in the

projective space in more detail.

Definition 2.23

The D4 root system consists of 24 roots in R4. Taking their images in the projective

space the roots a and −a get identified. So we get only 12 points in P3. We choose

their coordinates as:

P1 = [1 : −1 : 0 : 0] , P2 = [0 : 1 : −1 : 0] , P3 = [0 : 0 : 1 : −1] ,

P4 = [0 : 0 : 1 : 1] , P5 = [1 : 0 : −1 : 0] , P6 = [0 : 1 : 0 : −1] ,

P7 = [0 : 1 : 0 : 1] , P8 = [1 : 0 : 0 : −1] , P9 = [1 : 0 : 0 : 1] ,

P10 = [0 : 1 : 1 : 0] , P11 = [1 : 0 : 1 : 0] , P12 = [1 : 1 : 0 : 0] .
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The first four elements of the above set can be taken as simple roots. The length of

each vector is equal to
√

2, so there will be no arrows in the Dynkin diagram. Checking

angles between these points (viewed as vectors in the affine space) we get the following

pairs of orthogonal vectors:

P1 ⊥ P4, P1 ⊥ P3, P3 ⊥ P4.

For the remaining pairs of vectors we obtain always the angle π
3
.

This data suffices to construct the Dynkin diagram, which is visualized in Figure

2.3.

P1 P2

P3

P4

Figure 2.3: Dynkin diagram of the D4 configuration

The group generated by reflections for the above configuration has order 192 = 8 ·4!

[9].

Definition 2.24 (Representation of D4 as a subgroup of P GL(4))

The following 4 matrices generate the reflection group D4.

A1 =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 , A2 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ,

A3 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , A4 =


1 0 0 0

0 1 0 0

0 0 0 −1

0 0 −1 0

 .

If we apply any of the above matrices to a point in the D4 configuration, we get either

the same point, or some other point of the configuration.
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3 Asymptotic invariants

Recent decades have witnessed a notable shift in focus, moving from the study of iso-

lated objects to examining families of objects and their limit behavior. This shift has

been observed in both algebraic geometry and commutative algebra. In the theory of

linear series, significant pioneering work has been conducted, with notable contribu-

tions by Fujita [17]. To understand and quantify the asymptotic properties of various

algebraic objects—often inspired by geometric ideas—several invariants have been in-

troduced. In this section, we will discuss two of these asymptotic invariants.

3.1 Waldschmidt constants

In this part of the chapter, we introduce one of the asymptotic invariant derived from

the initial degree (α(I)) of the ideal and its symbolic powers (see Definition 1.7).

Definition 3.1 (Waldschmidt constant)

Let I be a nontrivial homogeneous ideal in R. The Waldschmidt constant of I is the

real number

α̂(I) = lim
m→∞

α(I(m))

m
,

where I(m) is the m-th symbolic power of I.

Lemma 3.2 (Subadditivity of the initial degree of symbolic powers of an ideal)

Let I be a radical homogeneous ideal in R = K[x0, . . . , xN ]. Then

α(I(k+`)) ≤ α(I(k)) + α(I(`))

for all positive k, ` ∈ Z.

Proof. By the Nagata-Zariski Theorem 1.13 there is

I(k)I(`) ⊂ I(k+`)

and the assertion follows. �
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It is natural to wonder if there is actually an equality in Lemma 3.2. The next

example shows that even for a very simple set of points and various values of powers

k and ` we can obtain either equality or strict inequality. Turning to the details we

revoke Example 2.17 from chapter two. For reader’s convenience we repeat it here.

Example 3.3

Consider 3 non-collinear points in P2:

P1 = [1 : 0 : 0] , P2 = [0 : 1 : 0] , P3 = [0 : 0 : 1] .

This configuration is visualised at Figure 3.1.

x z

y

[0 : 1 : 0]

[0 : 0 : 1] [1 : 0 : 0]

Figure 3.1: Configuration of 3 non-collinear in P2

From Example 1.25, we have for k = 1 that

I(1) = I(P1) ∩ I(P2) ∩ I(P3) = 〈xy, xz, yz〉

and α(I) = 2.

In turn, for ` = 3 we get

I(3) = 〈xy2z2, x2yz2, x2y2z, y3z3, x3z3, x3y3〉

and α(I(3)) = 5. As a consequence there is a strict inequality in Lemma 3.2 because

α(I(1)) + α(I(3)) = 7

but

α(I(1+3)) = 6,

as x2y2z2 ∈ I(4). Thus we obtain

6 = α(I(1+3)) < α(I(1)) + α(I(3)) = 7.
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On the other hand, for ` = 2 we computed in Example 1.25

I(2) = 〈xyz, y2z2, x2z2, x2y2〉,

so that α(I(2)) = 3.

Then in Lemma 3.2 there is equality because

α(I(1)) + α(I(2)) = 5

and also α(I(1+2)) = 5.

Applying Fekete’s Lemma from [16], we conclude that any subadditive sequence of

real numbers is bounded from below and converges to the infimum of its terms. This,

in turn, implies both the existence of the limit in Definition 3.1 and the equality:

α̂(I) = inf
α(I(m))

m
.

Waldschmidt constants were recently rediscovered and studied by Bocci and Har-

bourne in [6]. They used the symbol γ(I). But in [4] the authors proposed the notation

α̂(I), which became standard.

Waldschmidt constants are very difficult to determine in general. Suffices it to

mention that they are not known for n ≥ 10 and n not a perfect square number of

general points in P2. The famous conjecture of Nagata, see [25], predicts that if I is

the saturated ideal of a set of n ≥ 10 general points in P2, then α̂(I) =
√
n. The

Conjecture holds if n is a square of an integer. A lot of effort has been put in proving

the Conjecture in any other case but all these attempts failed so far. The best uniform

result available for an arbitrary number n > 10 is that

b
√
nc ≤ α̂(I) ≤

√
n.

As a preparation for what we need in the next chapter let us now define star

configurations, see [7].

Definition 3.4 (Star configuration)

Let N, r and s be positive integers with 1 ≤ r ≤ min{N, s}. Let F = {F1, . . . , Fs} be a
set of homogeneous forms in R = K[x0, . . . , xN ] such that all subsets of F of cardinality

less than or equal to r + 1 are regular sequences in R. Define an ideal of R by setting

Ir,F =
⋂

1≤i1<···<ir≤s

(Fi1 , . . . , Fir).
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The vanishing locus V (Ir,F ) in PN is called a star configuration of type (r, s) of codi-

mension r complete intersection subvarieties in PN determined by F .

When the forms F1, . . . , Fs are all linear, we will write L = {L1, . . . , Ls} instead of

F = {F1, . . . , Fs}, and we call the vanishing locus X of Ir,L a linear star configuration

in PN of type (r, s).

Remark 3.5

For any set of lines L = {`1, . . . , `s} in P2, with no three lines meeting in a point, the

set V (I2,L) is a linear star configuration of points.

In particular a linear plane star configuration has a binomial
(
s
2

)
number of points.

Example 3.6

Consider 3 non-collinear points from Example 3.3. This configuration is a star config-

uration in P2 of type (2, 3) with L1 : {x = 0}, L2 : {y = 0} and L3 : {z = 0}. We have

V (I2, {{x = 0}, {y = 0}, {z = 0}}) in P2. Every point from the set of
(
3
2

)
= 3 points is

an intersection of a pair of these three lines.

3.2 Resurgence

For a non-trivial homogeneous ideal I in the ring R of polynomials there is Ir ⊂ I(m)

if and only if r ≥ m. The celebrated result of Ein, Lazarsfeld and Smith [14, Theorem

A] asserts that there is also some uniformity in the reverse containment.

Theorem 3.7 (Ein, Lazarsfeld, Smith)

Let I ⊂ C[x0, . . . , xN ] be a homogeneous ideal. Then the containment

I(m) ⊂ Ir

is guaranteed for all m ≥ Nr.

The bound provided in the Theorem is not sharp in general and it is an intriguing ques-

tion to investigate how far m and r can go apart. To address this question Harbourne

and Bocci in [5] introduced a new invariant measuring in effect discrepancy between

ordinary and symbolic powers of ideals.

Definition 3.8 (Resurgence)

Let I be a homogeneous ideal in the ring of polynomials. The resurgence of I is the

real number

ρ(I) := sup
{m
r

: I(m) * Ir
}
.

36



As usual there is an asymptotic cousin of the above invariant defined.

Definition 3.9 (Asymptotic resurgence)

Let I be a homogeneous ideal in the ring of polynomials. The asymptotic resurgence

of I is the real number

ρ̂(I) := sup
{m
r

: I(ms) * Irsfors� 0
}
.

Since we are principally interested in fat point schemes, we summarize main properties

of both invariants under this assumption.

Theorem 3.10

Let Z = m1P1 + . . . + msPs be a fat point scheme in PN and let I = I(Z). Then we

have:

a) 1 6 ρ(I) 6 N ;

b) if m
r
< α(I)

α̂(I) , then for t� 0 there is I(mt) * I(rt);

c) if m
r
≥ reg(I)

α̂(I) , then I
(m) ⊆ Ir;

d)
α(I)

α̂(I)
6 ρ(I) 6

reg(I)

α̂(I)
,

and
α(I)

α̂(I)
= ρ(I) if α(I) = reg(I).

Proof. See Theorem 3.2.4 [22]. �

Example 3.11

We continue Example 3.3 of 3 non-collinear points in P2:

P1 = [1 : 0 : 0] , P2 = [0 : 1 : 0] , P3 = [0 : 0 : 1] .

We have I = I(P1) ∩ I(P2) ∩ I(P3) = 〈xy, xz, yz〉. By Example 1.25, we have that

reg(I) = 2.

We want to show first that α̂(I) 6 3
2
. The divisor L1∪L2∪L3 with L1 : {x = 0}, L2 :

{y = 0} and L3 : {z = 0} vanishes at every point of the configuration with multiplicity

2. By Theorem 1.13 xyz ∈ I(2) and we get the assertion.

Turning to the lower bound we will illustrate in this example our general strategy

which builds upon Bezout’s Theorem. To this end assume that there exists a positive

integer m and there exists a curve C of degree d3
2
me − 1 vanishing at every of the 3
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points of the configuration with multiplicity at least m. By Theorem 1.30 either L1 is

a component of C or ⌈3

2
m
⌉
− 1 = C.L1 ≥ m+m = 2m,

which is obviously excluded.

The same argument applies to the other two lines L2 and L3. Hence the union of

all the three lines is contained in C. Thus we can subtract the divisor L = L1 +L2 +L3

out of C and obtain a new curve C1 with deg(C1) =
⌈
3
2
m
⌉
− 1− 3 and multiplicity of

C in each point at least m− 2.

Repeating the same argument k ≥ 2 times we obtain a curve Ck of degree
⌈
3
2
m
⌉
−

1 − 3k ≥ 1 and multiplicity at least m − 2k in each of points in this configuration.

Applying Theorem 1.30 we get that either⌈3

2
m
⌉
− 1− 3k > 2(m− 2k)

which is not possible because m ≥ 2k or L is a component of Ck.

Since we cannot subtract L from C forever, we get a contradiction with the as-

sumption that C exists.

Hence, there is no element in I(m) of degree lower than
⌈
3
2
m
⌉
. Consequently, the

Waldschmidt constant for this configuration of points is equal to 3
2
.

As a consequence, by Theorem 3.10 we have

2
3
2

6 ρ(I) 6
2
3
2

,

so the resurgence ρ(I) = 4
3
.

Next we consider a set of points in P2 such that Theorem 3.10 does not provide the

exact value of the resurgence of its ideal.

Nonexample 3.12 (Dual Hesse configuration)

Consider the following 12 points in P2:

P1 = [1 : 0 : 0] , P2 = [0 : 1 : 0] , P3 = [0 : 0 : 1] ,

P4 = [1 : 1 : 1] , P5 =
[
1 : ε : ε2

]
, P6 =

[
1 : ε2 : ε

]
,

P7 = [ε : 1 : 1] , P8 = [1 : ε : 1] , P9 = [1 : 1 : ε] ,

P10 =
[
ε2 : 1 : 1

]
, P11 =

[
1 : ε2 : 1

]
, P12 =

[
1 : 1 : ε2

]
.

where ε is a primitive root of 1 of order 3. These points are all intersection points of

the following 9 lines:

L1 : x− y = 0, L2 : y − z = 0, L3 : z − x = 0,
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L4 : x− εy = 0, L5 : y − εz = 0, L6 : z − εx = 0,

L7 : x− ε2y = 0, L8 : y − ε2z = 0, L9 : z − ε2x = 0.

Denote by I ideal of those points, namely I = I(P1) ∩ I(P2) ∩ · · · ∩ I(P12). We have

that α(I) = 2, α̂(I) = 3
2
, ρ(I) = 3

2
and reg(I) = 5 (see proof in [13], Theorem 2.1).

However applying Theorem 3.10 we get

2
3
2

6 ρ(I) 6
5
3
2

,

so that neither the lower bound, nor the upper bound are sharp in this case. Moreover,

the upper bound is in fact even worse than the general upper bound valid for arbitrary

ideals J of points in P2, namely ρ(J ) ≤ 2.

P1

P2

P3

P4

P5 P6

P7

P8

P9

P10 P11 P12

Figure 3.2: The dual Hesse configuration
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4 Waldschmidt constants of symmetric sets

of points in projective spaces

Our motivation to study Waldschmidt constants comes from the article from 2018:

"Negative Curves on Symmetric Blowups of the Projective Plane, Resurgences, and

Waldschmidt Constants". The authors focus on the Klein configuration which consists

of 21 lines in P2 which meet in 21 quadruple points and 28 triple points, so that there

are 49 points altogether. In this article authors consider also the Wiman configuration

with 201 points and 45 lines which meet in 36 quintuple points, 45 quadruple points,

and 120 triple points.

They tried to compute the Waldschmidt constant and the asymptotic resurgence

for the mentioned configurations and presented the following theorem [3] (Theorem

1.1.):

Theorem 4.1

For the Klein configuration K of 21 lines, we have

6.480 ≈ 661

102
6 α̂(IK) 6 6.5.

For the Wiman configuration W of 45 lines, we have

α̂(IW) =
27

2
.

To prove this theorem the authors emphasize the importance of the invariant theory.

The proof of the upper estimate for the Waldschmidt constant for the above configu-

rations is based on constructing curves in symbolic powers of I. In the first step the

authors define a divisor class Dk and specify the dimension of the linear system|Dk|.
Typically Dk is created by taking appropriate union of configuration lines. This works

in both cases of the Klein configuration and the Wiman configuration and provides an

upper bound.

Getting the lower bound is much more demanding. Their approach is to prove

that certain G-invariant divisor classes on the blowup X are nef. This prohibits the
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existence of curves in I(m) with too low degree, as they would intersect the nef divisor

negatively.

In the next section we compute the exact value of the Waldschmidt constant of the

H3 root system in P2. However we show that H3 arises as a star configuration and

the symmetries are irrelevant for the invariant we are interested in. Nevertheless, this

configuration is highly symmetric as Klein configuration and Wiman configuration of

lines in projective plane are.

Then we focus on D4, B4, F4 and H4 configurations in projective space P3. This

is an innovative part of our work, as Waldschmidt constants of point configurations in

higher dimensional projective spaces have not been studied so far. The configurations

of points we study here are derived from root system. In this chapter we provide values

of Waldschmidt constants of the above-mentioned configurations and we justify them

with a theoretical proof. Only for the H4 configuration we provide a conjectural value

based on computer experiments.

All calculations carried out here were motivated and checked with the computer

algebra system Singular [11] (compare the code in the Appendix).

We conclude this small introduction recalling an fundamental in the projective

geometry.

Definition 4.2 (Cross-ratio)

Let P1, . . . , P4 be mutually distinct points on the projective line P1. There exist num-

bers p, q, r, s such that

P3 = p · P1 + q · P2, P4 = r · P1 + s · P2.

In this parameterization of the line we have

P1 = (1 : 0), P2 = (0 : 1), P3 = (p : q), P4 = (r : s).

Then the cross-ratio of so ordered points is the number

DV(P1, P2;P3, P4) =
det(P1P3)

det(P1P4)
:
det(P2P4)

det(P2P3)
.

4.1 H3 root system

In this part, we describe the H3 configuration. This configuration comes from a root

system.
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Definition 4.3

The set Z(H3) is a set of 15 points, which can be assigned the following coordinates:

P1 = [1 : 0 : 0] , P2 = [0 : 1 : 0] , P3 = [0 : 0 : 1] ,

P4 =
[
1 : ϕ : ϕ2

]
, P5 =

[
−1 : ϕ : ϕ2

]
, P6 =

[
1 : −ϕ : ϕ2

]
,

P7 =
[
1 : ϕ : −ϕ2

]
, P8 =

[
ϕ : −ϕ2 : 1

]
, P9 =

[
−ϕ : ϕ2 : 1

]
,

P10 =
[
ϕ : ϕ2 : −1

]
, P11 =

[
ϕ : ϕ2 : 1

]
, P12 =

[
ϕ2 : 1 : −ϕ

]
,

P13 =
[
ϕ2 : −1 : ϕ

]
, P14 =

[
−ϕ2 : 1 : ϕ

]
, P15 =

[
ϕ2 : 1 : ϕ

]
.

where we have ϕ2−ϕ−1 = 0, so that ϕ is the golden ratio. The associated configuration

together with 6 lines cutting it out is visualised at Figure 4.1. The 6 lines which pass

through 5 configuration points each have the following equations:

L1 : y − (ϕ− 1)z = 0, L2 : y + (ϕ− 1)z = 0, L3 : x− ϕz = 0,

L4 : x+ ϕz = 0, L5 : x− (ϕ− 1)y = 0, L6 : x+ (ϕ− 1)y = 0.

∞

Figure 4.1: Line configuration associated to Z(H3)

Theorem 4.4

The Waldschmidt constant of the H3 configuration of points is equal to 3.

Remark 4.5

The H3 configuration is an instance of a star configuration (see Definition 3.4) de-

termined by 6 lines. Hence the result of Theorem 4.4 follows from general results in

Subsection 4.2 in [12] or Proposition 2.9 in [20].
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For the sake of completeness we provide an independent proof below.

Proof. Consider the divisor L1 + · · · + L6. It vanishes at every point of the

configuration with multiplicity 2, so that using Theorem 1.13 we get

α̂(I) ≤ 6

2
= 3.

Turning to a lower bound we follow our usual strategy. Let us assume that for some

positive integer m there exists a curve C of degree 3m − 1 vanishing at every of the

15 configuration points with multiplicity at least m. Let us also assume that m is the

lowest integer with the property that

α(I(m))

m
< 3.

By Theorem 1.30 L1 is a component of C because the alternative case would imply

3m− 1 = C.L1 ≥ 5m,

which is clearly not possible.

The same argument applies to any other line L2, . . . , L6. Hence their union is

contained in C. Thus we can take the divisor L = L1 + . . .+L6 out of C and obtain a

new curve C1 with deg(C1) = 3m− 1− 6 = 3(m− 2)− 1 and multiplicity of C in each

point of H3 at least m− 2. But the existence of C1 implies

α(I(m−2))
m− 2

< 3

contradicting the minimality of m stipulated above. �

In the next sections we consider Waldschmidt constants of some configurations of

points in P3. We begin with the simplest root system in P3.

4.2 D4 root system

In this section, we compute the Waldschmidt constant of the D4 root system. Before

we start let us make a remark on certain configuration of points in P2.

Remark 4.6

Consider the following 6 points in P2:

P1 = [1 : −1 : 0] , P2 = [1 : 0 : 1] , P3 = [1 : 0 : −1] ,

P4 = [0 : 1 : 1] , P5 = [0 : 1 : −1] , P6 = [1 : 1 : 0]
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and let I be their saturated ideal. We have that α̂(I) = 2. This is another instance of

a star configuration determined by the following 4 lines:

L1 : x− y − z = 0, L2 : x+ y − z = 0,

L3 : x− y + z = 0, L4 : x+ y + z = 0.

This configuration is visualised in Figure 4.2.

P1

P2

P6

P3

P4 P5

L4

L1

L3

L2

Figure 4.2: Configuration of 6 points

Up to a projective transformation the points in the D4 configuration may be assumed

to have the following coordinates:

P1 = [1 : −1 : 0 : 0] , P2 = [0 : 1 : −1 : 0] , P3 = [0 : 0 : 1 : −1] ,

P4 = [0 : 0 : 1 : 1] , P5 = [1 : 0 : −1 : 0] , P6 = [0 : 1 : 0 : −1] ,

P7 = [0 : 1 : 0 : 1] , P8 = [1 : 0 : 0 : −1] , P9 = [1 : 0 : 0 : 1] ,

P10 = [0 : 1 : 1 : 0] , P11 = [1 : 0 : 1 : 0] , P12 = [1 : 1 : 0 : 0] .

Theorem 4.7

The Waldschmidt constant of the D4 configuration of points is 2.

Proof.

We will construct a divisor actually computing the value 2. To this end let

H1 := {x = 0}, H2 := {y = 0}, H3 := {z = 0}, H4 := {w = 0}.

For H = H1 + H2 + H3 + H4 we have deg(H) = 4 and multiplicity of H in each

point of D4 is exactly 2 (see table 4.2). This implies that

α̂(I) ≤ 2.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

H1 + + + + + +

H2 + + + + + +

H3 + + + + + +

H4 + + + + + +

Table 4.1: Incidences of points and planes

Suppose now that for some positive integer m there exists a surface S of degree

lower than 2m vanishing at all 12 points of the configuration with multiplicity at least

m. By the symmetry there are two options: either S contains each of the planes H1,

H2, H3, H4 or none of them.

In the later case, for example for the plane H4 to fix the notation, the intersection

of S and H4 is a curve of degree lower than 2m which vanishes in the 6 points from

D4 contained in this plane to the multiplicity at least m. It is not possible, because

the Waldschmidt constant for these 6 points is equal to 2 by Remark 4.6. The same

argument works for planes H1, H2 and H3.

Thus S contains all planes H1, H2, H3, H4. This implies that S−(H1+H2+H3+H4)

has degree lower than 2(m− 2) and vanishes at all 12 points of the configuration with

multiplicity at least m − 2. But these numbers allow us to conclude that H must be

again a component of S −H. Since this goes forever, we get a contradiction with the

assumption that S exists.

Consequently, the Waldschmidt constant for the D4 configuration of 12 points is

equal to 2. �

4.3 B4 root system

The next configuration extends the D4 configuration by adding four more points.

Definition 4.8

The set Z(B4) consists of the following 16 points:

P1 = [1 : −1 : 0 : 0] , P2 = [0 : 1 : −1 : 0] , P3 = [0 : 0 : 1 : −1] ,

P4 = [0 : 0 : 1 : 1] , P5 = [1 : 0 : −1 : 0] , P6 = [0 : 1 : 0 : −1] ,

P7 = [0 : 1 : 0 : 1] , P8 = [1 : 0 : 0 : −1] , P9 = [1 : 0 : 0 : 1] ,
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P10 = [0 : 1 : 1 : 0] , P11 = [1 : 0 : 1 : 0] , P12 = [1 : 1 : 0 : 0] ,

P13 = [1 : 1 : 1 : 1] , P14 = [−1 : −1 : 1 : 1] , P15 = [−1 : 1 : 1 : −1] ,

P16 = [−1 : 1 : −1 : 1] .

The configuration of these points is visualized in Figure 4.3.

Figure 4.3: The B4 configuration of points and the coordinate tetrahedron

The points in B4 can be therefor considered as vertices of a tetrahedron together

with two other points on each edge of this solid. Since there are altogether 4 points

on each edge, it is natural to wonder about their cross-ration. By symmetry, it is the

same on each edge, so we consider only a specific 4-tuple: P13, P12, P4, P14.

We have

[0 : 0 : 1 : 1] = p[1 : 1 : 1 : 1] + q[1 : 1 : 0 : 0]

with p = 1, q = −1 and

[−1 : −1 : 1 : 1] = r[1 : 1 : 1 : 1] + s[1 : 1 : 0 : 0]

with r = 1 and s = −2.

By Definition 4.2 the cross-ratio of this 4-tuple is

−1 · 1
1 · (−2)

=
1

2
.

That in turn implies that the points are harmonic.
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Theorem 4.9

The Waldschmidt constant for B4 configuration of points is equal to 2.

Proof. The configuration D4 has 12 points and B4 has 16 points. We can see

that the D4 ⊆ B4. We added 4 points to the previous configuration, which already had

the Waldschmidt constant 2. If we add points we expect the Waldschmidt constant to

increase, so that in any case it must be

α̂(IB4) ≥ 2.

We consider the following four planes:

Π1 : x+ y + z + w = 0,

Π2 : x− y + z − w = 0,

Π3 : x− y − z + w = 0,

Π4 : x+ y − z − w = 0.

Each of the planes contains 9 configuration points. Each configuration point is con-

tained in at least two of the planes and the points P13, P14, P15, P16 are contained in

three of them.

Hence, the polynomial

P (x : y : z : w) = (x+ y + z + w)(x− y + z − w)(x− y − z + w)(x+ y − z − w)

belongs in any case to the second symbolic power of I(B4) and deg(P ) = 4, so that

α̂(IB4) ≤ 2.

Consequently, the Waldschmidt constant for the B4 configuration of 16 points is equal

to 2. �

4.4 The F4 root system

In this section, we consider an even bigger root system F4. It contains the B4 root

system and consequently also the D4. Computing its Waldschmidt constant has turned

to be much more complicated that for the two systems considered before.

Let us start with the definition of a grid [29].
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Definition 4.10 (Grid)

Let a and b be positive integers. A set Z of a · b points in P3 is an (a, b)−grid if there

exist two sets of lines L1, . . . , La and M1, . . . ,Mb such that

• lines in each of the sets are pairwise skew;

• each pair of lines, one from one set and one from the other intersect in a point

of Z.

Thus

Z = {Li ∩Mj, i = 1, . . . , a, j = 1, . . . , b} .

An example of a (2, 2)-grid is visualised in Figure 4.4.

[0 : 0 : 0 : 1]

[1 : 0 : 0 : 1]
[1 : 1 : 2 : 1]

[1 : 1 : 1 : 1]

L1

L2

M1

M2

Figure 4.4: A (2, 2) - grid

Remark 4.11

Note that any 4 points in P3 in linear general position form a (2, 2)-grid.

More generally, any set of 2b points distributed by b on two skew lines forms a (2, b)-

grid.

These cases are somewhat special. In general, being a grid imposes strong constrains

on the geometry of the underlying set of points.

Now we turn attention to the main hero of this section. We use explicit coordinates

rather than theoretical description because in this way we can much easier check various

incidences among points in F4 and some lines and planes in P3.

Definition 4.12

The set Z(F4) consists of 24 points in P3, which can be assigned the following coordi-

nates:

P1 = [1 : −1 : 0 : 0] , P2 = [0 : 1 : −1 : 0] , P3 = [0 : 0 : 1 : −1] ,
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P4 = [0 : 0 : 1 : 1] , P5 = [1 : 0 : −1 : 0] , P6 = [0 : 1 : 0 : −1] ,

P7 = [0 : 1 : 0 : 1] , P8 = [1 : 0 : 0 : −1] , P9 = [1 : 0 : 0 : 1] ,

P10 = [0 : 1 : 1 : 0] , P11 = [1 : 0 : 1 : 0] , P12 = [1 : 1 : 0 : 0] ,

P13 = [1 : 1 : 1 : 1] , P14 = [−1 : −1 : 1 : 1] , P15 = [−1 : 1 : 1 : −1] ,

P16 = [−1 : 1 : −1 : 1] , P17 = [1 : 1 : 1 : −1] , P18 = [1 : 1 : −1 : 1] ,

P19 = [1 : −1 : 1 : 1] , P20 = [1 : −1 : −1 : −1] , P21 = [1 : 0 : 0 : 0] ,

P22 = [0 : 1 : 0 : 0] , P23 = [0 : 0 : 1 : 0] , P24 = [0 : 0 : 0 : 1] .

This set contains some (4, 4)-grids. For example there are 16 points in F4 contained in

the smooth quadric Q defined by equation xw − yz = 0. This subset is a (4, 4)-grid

visualised in Figure 4.5. The remaining 8 points split in two 4-tuples of collinear points.

This is also indicated in Figure 4.5 together with equations defining these two lines and

lines building the grid.

P13

P24

P12

P18

P9

P19

P2
P8

P20

P10

P17

L1 L2 L3 L4

M1

M2

M3

M4

P11 P16 P7

P21 P1 P22

P14 P5 P15 P6

P4 P23 P3

(y + z, x − w)

(z − w, x − y) (w, y) (z + w, x + y) (z, x)

(y − z, x + w)

(y − w, x − z)

(w, z)

(y + w, x + z)

(y, x)

Figure 4.5: The F4 configuration of 24 points

Taking coordinates of points Pi as coefficients of linear equations, we obtain the

following set of 24 planes (note that the numbering does not much the aforementioned

way to derive the equations).
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Π1: x+ y = 0, Π2: y + z = 0,

Π3: z + w = 0, Π4: z − w = 0,

Π5: x+ z = 0, Π6: y + w = 0,

Π7: y − w = 0, Π8: x+ w = 0,

Π9: x− w = 0, Π10: y − z = 0,

Π11: x− z = 0, Π12: x− y = 0,

Π13: −x− y + z + w = 0, Π14: −x+ y + z − w = 0,

Π15: x− y + z − w = 0, Π16: x+ y + z + w = 0,

Π17: x− y + z + w = 0, Π18: −x+ y + z + w = 0,

Π19: −x− y + z − w = 0, Π20: x+ y + z − w = 0,

Π21: x = 0, Π22: y = 0,

Π23: z = 0, Π24: w = 0.

Table 4.2: The 24 planes associated to the F4 configuration

Every plane Πi contains exactly 9 points from the F4 configuration. This arrange-

ment is self-dual in the sense that each of 24 points Pi lies on exactly 9 planes. In

Table 4.3, we present a table of incidences between the above planes and the points.

Π1: P1 P3 P4 P15 P16 P19 P20 P23 P24

Π2: P2 P8 P9 P14 P16 P18 P19 P21 P24

Π3: P1 P3 P12 P15 P16 P17 P18 P21 P22

Π4: P1 P4 P12 P13 P14 P19 P20 P21 P22

Π5: P5 P6 P7 P14 P15 P18 P20 P22 P24

Π6: P5 P6 P11 P14 P15 P17 P19 P21 P23

Π7: P5 P7 P11 P13 P16 P18 P20 P21 P23

Π8: P2 P8 P10 P14 P16 P17 P20 P22 P23

Π9: P2 P9 P10 P13 P15 P18 P19 P22 P23

Π10: P8 P9 P10 P13 P15 P17 P20 P21 P24

Π11: P6 P7 P11 P13 P16 P17 P19 P22 P24

Π12: P3 P4 P12 P13 P14 P17 P18 P23 P24

Π13: P1 P3 P7 P9 P10 P11 P13 P15 P16

Π14: P2 P4 P7 P8 P11 P12 P13 P14 P16

Π15: P4 P5 P6 P9 P10 P12 P13 P14 P15

Π16: P1 P2 P3 P5 P6 P8 P14 P15 P16

Π17: P3 P5 P7 P8 P10 P12 P17 P18 P20
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Π18: P2 P3 P6 P9 P11 P12 P17 P18 P19

Π19: P1 P4 P6 P8 P10 P11 P17 P19 P20

Π20: P1 P2 P4 P5 P7 P9 P18 P19 P20

Π21: P2 P3 P4 P6 P7 P10 P22 P23 P24

Π22: P3 P4 P5 P8 P9 P11 P21 P23 P24

Π23: P1 P6 P7 P8 P9 P12 P21 P22 P24

Π24: P1 P2 P5 P10 P11 P12 P21 P22 P23

Table 4.3: Planes and points incidences

Let us now consider one of the configuration planes for F4, namely we take the plane

Π24 defined by the equation w = 0. This plane contains, as already mentioned 9 points

from F4. We denote this set of points by Z9:

P1 = [1 : −1 : 0 : 0] , P2 = [0 : 1 : −1 : 0] , P5 = [1 : 0 : −1 : 0] ,

P10 = [0 : 1 : 1 : 0] , P11 = [1 : 0 : 1 : 0] , P12 = [1 : 1 : 0 : 0] ,

P21 = [1 : 0 : 0 : 0] , P22 = [0 : 1 : 0 : 0] , P23 = [0 : 0 : 1 : 0] .

In Figure 4.6 the set Z9 is indicated in the plane Π24, where the line z = 0 is taken

as the line at infinity.

P 12

P 22

P 11

P 21

P 1

P 5

P 10

P 23

P 2

`1

`2

`3
m1

m2

m3

m4

Figure 4.6: Visualization of Z9 in Π24

The points in Z9 form a union of two star configurations, one defined by 3 lines

`1, `2, `3. Each of them contains 4 points from the set Z9. Their equations in the plane

w = 0 are very nice:

`1 : y = 0, `2 : x = 0, `3 : z = 0.

51



The other star configuration is defined by 4 lines m1, . . . ,m4, which pass through 3

points each. They have the following equations:

m1 : x− y + z = 0, m2 : x− y − z = 0,

m3 : x+ y + z = 0, m4 : x+ y − z = 0.

This configuration is visualised in Figure 4.6.

The Waldschmidt constant for the first star configuration is equal to 3
2
. On the other

hand, for the six points of the second star configuration, the Waldschmidt constant is

equal to 2.

These configurations complement each other as follows: Six points coming from the

second star configuration are distributed by two on the lines `1, `2, `3 forming the first

star.

Theorem 4.13

The Waldschmidt constant for Z9 configuration is equal to 5
2
.

Proof. To begin with note that there are the following incidences:

P5, P11 ∈ `1, P2, P10 ∈ `2, P1, P12 ∈ `3.

Let D1 = `1 + `2 + `3 and D2 = m1 +m2 +m3 +m4. We consider the order of vanishing

of D1 and D2 in the points of Z9.

point P1 P2 P5 P10 P11 P12 P21 P22 P23

order of vanishing for D1 1 1 1 1 1 1 2 2 2

order of vanishing for D2 2 2 2 2 2 2 0 0 0

Taking ∆ = 2D1 + D2 we obtain a curve of degree 10 vanishing at all 9 points to

order 4. This implies:

α̂(Z) ≤ 10

4
=

5

2
.

Suppose that there is a curve γ of degree strictly less than 5
2
m vanishing to order m

at all points of Z9. Without any loss of generality we may assume additionally m ≥ 5.

Theorem 1.30 implies that either

deg γ deg `i ≥
∑
P∈Z

(multP γ ·multP `i)

or `i is a component of γ.
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In the first case we would have

5

2
m > 4m,

which is not possible. So `i ⊆ γ for all i = 1, 2, 3.

Let γ′ = γ −D1. Then deg γ′ < 5m
2
− 3 and

multP γ
′ ≥

m− 1 for P ∈ {P1, P2, P5, P10, P11, P12}

m− 2 for P ∈ {P21, P22, P23}.

Applying Theorem 1.30 once again for the curves γ′ and `i we obtain:

5

2
m− 3 > 2(m− 2) + 2(m− 1)

which reduces to 2 > m, which is clearly not possible, so D1 is again a component of

γ′. Thus γ contains 2D1.

By the same token we have that either

deg γ degmi ≥
∑
P∈Z

(multP γ ·multP mi)

or mi is a component of γ. The first case implies

5

2
m ≥ 3m,

which is not possible. Consequently, mi ⊆ γ for all i = 1, 2, 3, 4, so that γ contains D2.

Let γ′′ = γ− 2D1−D2. Then deg γ′′ < 5
2
m− 10 = 5

2
(m− 4) and multP γ

′′ ≥ m− 4

for all P ∈ Z9.

Hence we are in the position to repeat the above considerations withm replaced with

m− 4. Since γ can contain only finitely many copies of ∆ we arrive to a contradiction.

Consequently, we get that the Waldschmidt constant for the configuration Z9 of 9

points is equal to 5
2
. �

Example 4.14

We consider the minimal free resolution of the ideal I = I(Z9) of the above 9 points

and obtain:

0→ R3(−6)
αT

−→ R(−4)⊕R6(−5)
βT

−→ R(−1)⊕R(−3)⊕R3(−4)
γ−→ I → 0,

where
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α =


y2 − z2 −x w 0 0 0 0

x2 − z2 0 0 −y w 0 0

x2 − y2 0 0 0 0 −z w

 ,

β =



−xyz w 0 0 0

−y3z + yz3 0 w 0 0

0 −y2 + z2 x 0 0

−x3z + xz3 0 0 w 0

0 −x2 + z2 0 y 0

−x3y + xy3 0 0 0 w

0 −x2 + y2 0 0 z


,

and

γ =
[
w xyz y3z − yz3 x3z − xz3 x3y − xy3

]
. It follows that

reg(I) = max{4− 0; 3− 0; 1− 0; 5− 1; 1− 1; 3− 1} = 4.

Revoking Theorem 3.10 d) we conclude that the resurgence for the Z9 configuration is

ρ(I) =
α(I)

α̂(I)
=

reg(I)

α̂(I)
=

8

5
.

We come now to the main result of this part and of the whole thesis.

Theorem 4.15

The Waldschmidt constant of the F4 configuration of points is equal to 8
3
.

Proof. Keeping the notation from Table 4.2, we consider the divisor

D = Π1 + Π2 + · · ·+ Π24 (4.1)

of degree 24 vanishing at every point of the F4 configuration with multiplicity 9. Then,

we obtain

α̂(I) ≤ 24

9
=

8

3
.

The rest of the proof amounts to justifying the inverse inequality

α̂(I) ≥ 8

3
. (4.2)

One could naively hope that the standard argument with the Bezout’s Theorem applied

to a divisor S violating (4.2) would suffice. By this we mean that taking the trace of

S on one (hence on any) of the planes Πi would violate the Waldschmidt constant of
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the configuration of points of F4 contained in that plane, thus forcing the plane to be

a component of S. However, since 8
3
> 5

2
this approach cannot work.

As a remedy to this deficiency we need to consider additional collinearities among

the configuration points. So, interestingly it is not enough to consider divisors only

but we must (at least in our approach) pay attention to lower dimensional subvarieties

as well.

To begin with, we consider lines passing through 3 points from the F4 configuration.

There are 32 such lines t1, . . . , t32. We present ideals of these lines below:

t1 = (w, x+ y + z), t2 = (z, x+ y + w), t3 = (z, x+ y − w),

t4 = (w, x+ y − z), t5 = (x+ z + w, x), t6 = (y + z − w, x),

t7 = (w, x− y − z), t8 = (y, x+ z + w), t9 = (y − z − w, x),

t10 = (y, x− z − w), t11 = (y, x+ z − w), t12 = (y − z + w, x),

t13 = (y, x− z + w), t14 = (w, x− y + z), t15 = (z, x− y − w),

t16 = (z, x− y + w), t17 = (y − z, x− z), t18 = (y − w, x− w),

t19 = (z − w, x− w), t20 = (z − w, y − w), t21 = (y + w, x+ w),

t22 = (y + z, x+ z), t23 = (z − w, y + w), t24 = (z − w, x+ w),

t25 = (z + w, y + w), t26 = (z + w, x− w), t27 = (y + w, x− w),

t28 = (y − z, x+ z), t29 = (z + w, x+ w), t30 = (z + w, y − w),

t31 = (y + z, x− z), t32 = (y − w, x+ w).

In principle, the claims above can be verified by hand computations. We used Singular

to facilitate dull calculations.

It is also useful to keep record of which points from the configuration are contained

on which lines. These incidences are recorded in the list below.

t1 : P1, P2, P5, t2 : P1, P6, P8, t3 : P1, P7, P9,

t4 : P1, P10, P11, t5 : P2, P3, P6, t6 : P2, P4, P7,

t7 : P2, P11, P12, t8 : P3, P5, P8, t9 : P3, P7, P10,

t10 : P3, P9, P11, t11 : P4, P5, P9, t12 : P4, P6, P10,

t13 : P4, P8, P11, t14 : P5, P10, P12, t15 : P6, P9, P12,

t16 : P7, P8, P12, t17 : P13, P17, P24, t18 : P13, P18, P23,

t19 : P13, P19, P22, t20 : P13, P20, P21, t21 : P14, P17, P23,

t22 : P14, P18, P23, t23 : P14, P19, P21, t24 : P14, P20, P22,
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t25 : P15, P17, P21, t26 : P15, P18, P22, t27 : P15, P19, P23,

t28 : P15, P20, P24, t29 : P16, P17, P22, t30 : P16, P18, P21,

t31 : P16, P19, P24, t32 : P16, P20, P23.

Now, an important observation is that intersecting these 32 lines with the plane w = 0,

which is Π24 we obtain 4 new points:

Z1 = [1 : 1 : 1 : 0] , Z2 = [1 : 1 : −1 : 0] , Z3 = [−1 : 1 : 1 : 0] , Z4 = [1 : −1 : 1 : 0] .

Pairs of these points determine 6 new lines k1, . . . , k6, whose ideals are presented below:

k1 = (w, x− y), k2 = (w, y − z), k3 = (w, x− z),

k4 = (w, x+ z), k5 = (w, y + z), k6 = (w, x+ y).

These new lines pass also through some of the F4 configurations points contained in

the plane {w = 0}. Precise incidences are recorded in the table below. This table

introduces also a convenient notation for sets of distinguished points. We have

Z = {Z1, Z2, Z3, Z4} , Q = {P1, P2, P5, P10, P11, P12} , P = {P21, P22, P23} .

Note that the points in Q are intersection points of pairs of mi lines, whereas the points

in P are intersection points of `i lines. Thus both sets are star configurations.

Z Q P

Z1 Z2 Z3 Z4 P1 P2 P5 P10 P11 P12 P21 P22 P23

k1 + + + +

k2 + + + +

k3 + + + +

k4 + + + +

k5 + + + +

k6 + + + +

Thus on each line ki through two points from Z there is a point Pj where two of mi

lines meet and a point Qj where two of `i lines meet.

Completing the sets of points, there are three sets of distinguished lines:

1. M : m1,m2,m3,m4;

2. L : `1, `2, `3;

3. K : k1, k2, k3, k4, k5, k6.

56



Let S be a surface of degree d not containing the {w = 0} plane and vanishing

at all points from a set X to order at least [X], where X is one of the sets P,Q or Z.

Restricting S to that plane we obtain a curve Γ of degree d. This curve passes through

various points distinguished in that plane, so that by the Bezout theorem some lines

determined by them are forced to be components of Γ. Consequently these lines can be

subtracted from Γ and we may examine the residual curve, which is simpler because it

has lower degree and its multiplicities in the relevant points are also lower. Somewhat

informally, we call this procedure ”a reduction game” on Γ. The key point here is to

use the symmetry of the studied configuration. By this token, as soon as one of lines

mi, `i or ki is forced to be a component of Γ, in fact the whole set M,L or K must be a

component. We will explain it in more details in the special case studied before. For

now, let us observe how subtracting any of sets M,L or K from Γ affects its degree and

multiplicities in sets P,Q or Z.

For M, we have:

d→ d− 4;

[P]→ [P];

[Q]→ [Q]− 2;

[Z]→ [Z].

For L, we have:

d→ d− 3;

[P]→ [P]− 2;

[Q]→ [Q]− 1;

[Z]→ [Z].

For K, we have:

d→ d− 6;

[P]→ [P]− 2;

[Q]→ [Q]− 1;

[Z]→ [Z]− 3.

So that for 2K + 3M, we have:

d→ d− 24;

[P]→ [P]− 4;

[Q]→ [Q]− 8;

[Z]→ [Z]− 6.

We illustrate our strategy first in a specific special case before passing to the general

statement.

Special case

We want to show that there is no surface S of degree 2399 = 24 · 100 − 1 vanishing

at every of 24 points of the F4 configuration with multiplicity ≥ 900 = 9 · 100. Let

us assume to the contrary that such a surface exists and that the trace of this surface

on the plane Π24 = {w = 0} is a curve Γ. (If S contains the plane, then by symmetry

it must contain the whole divisor D defined in (4.1). Taking S − D, we get another

surface S ′ satisfying
deg(S ′)

multF4 S
′ <

8

3
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and we argue with that surface.) We begin with a reduction with respect to the line

m1.

By the Bezout theorem, we have that the curve Γ either contains the line m1 or

2399 = S.m1 > 3 · 900,

which is clearly not possible.

We want to find the multiplicity k with which the curve Γ must contain the line

m1. To this end we want to determine the smallest k such that the following inequality

holds:

2399− k > 3 · (900− k).

It follows that

k >
⌈301

2

⌉
= 151.

Of course, by symmetry, this is in fact the least multiplicity, such that the union of

lines M appears as a component of Γ.

In the next step we perform a reduction of (Γ− 151M) with respect to L. Looking

at the intersection of this curve with one of the lines `i, we obtain similarly as above:

1795− k > 2(900− k) + 2(598− k).

This implies

k >
⌈1201

3

⌉
= 401.

Subtracting we obtain a curve Γ′ = Γ− 151M− 401L of degree 592. Since

592 + 5 = 98 + 197 + 2 · 151 (4.3)

and the multiplicity of Γ′ in points of P is at least 98, in points of [Q] is at least 197

and in points of [Z] is at least 151 we can continue the reduction game with the union

of lines K. Looking for the least multiplicity k such that Γ′ contains K we get:

592− k > 98− k + 197− k + 302− 2k,

which amounts to

k >
⌈5

3

⌉
= 2.

Now, it turns out, that we in the position to continue our game with lines in M since

580− k > 3(195− k)

58



gives

k >
⌈5

2

⌉
= 3.

After the last two steps we obtain

568 + 5 = 94 + 189 + 2 · 145, (4.4)

where 568 is degree of the curve Γ′′ = Γ′ − (2K + 3M) with multiplicity at least 94

in points in [P], 189 in points of [Q] and 145 points of [Z]. This means that (4.4) is

basically the same condition as (4.3) and we can repeat removing the divisor 2K + 3M

over and over again, at least as long as the residual curve retains positive multiplicities

in all relevant points. With this particular data we can do this 23 times. In the two

final two steps we subtract 2K and M and conclude with a clear contradiction. The

record of our reduction game is summarized in Table 4.4.

d [P] [Q] [Z] reduction

2399 900 900 151 151 · M

1795 900 598 151 401 · L

592 98 197 151 2 · K

580 94 195 145 3 · M

568 94 189 145 23 · (2K + 3M)

16 2 5 7 2 · K

4 -2 3 1 1 · M

0 2 1

Table 4.4: The reduction game in the special case

The general case

We basically mimic our strategy from the special case. Since the Waldschmidt constant

is the limit of the sequence α(I(m))/m, it is computed by any subsequence of m’s. We

restrict our attention to powers of 10. Thus it is enough to show that there is no surface

of degree 24 · 10a − 1 which vanishes to order at least 9 · 10a at all points of F4. The

existence of such a surface would imply

α̂(I(F4)) <
24 · 10a

9 · 10a
=

8

3
.

So let us assume to the contrary that such a surface S exists. We want to show that it

contains all plains Πi, with i = 1, . . . , 24.

59



We observe first that S contains every line ti with i = 1, . . . , 32 with multiplicity

at least 1/2 · 3 · 10a + 1. Indeed, it is the least value of k such that Bezout’s inequality

24 · 10a − 1− k ≥ 3 · (9 · 10a − k) (4.5)

is satisfied. Consequently, if S does not contain e.g. Π24, then the multiplicity of the

curve Γ = S ∩ Π24 at the Zi points is at least that big. Thus we have the initial data

for our reduction game.

d [P] [Q] [Z]

24 · 10a − 1 9 · 10a 9 · 10a 1/2 · 3 · 10a + 1

Table 4.5: The initial data for the reduction game in the general case

Our first step in the reduction game is to determine to which multiplicity k the lines

mi are enforced by the Bezout Theorem to be contained in Γ. Since there are exactly

3 configuration points on each of these lines, the calculation is exactly the same as in

(4.5). This means that Γ contains M with multiplicity at least 3
2
· 10a + 1. Removing

this component from Γ we get

d [P] [Q] [Z]

18 · 10a − 5 9 · 10a 6 · 10a − 2 1/2 · 3 · 10a + 1

By a slight abuse of notation, we call the resulting divisor again Γ in the hope that

it will lead to no confusion. In the next step we consider the `i lines. Here we need to

determine the least integer k such that

18 · 10a − 5− k ≥ 2(9 · 10a − k) + 2(6 · 10a − 2− k)

holds. This amounts to k = 4 · 10a + 1. This means that Γ contains L with that

multiplicity. Subtracting that much of L from Γ gives the following data for the new

Γ curve.

d [P] [Q] [Z]

6 · 10a − 8 10a − 2 2 · 10a − 3 1/2 · 3 · 10a + 1

Similarly as in the special case, we are now in the position that we can step by

step remove from Γ the divisor 2K + 3M so many times k that the degree of the curve

and all multiplicities remain non-negative. It is easy to verify that these conditions are
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satisfied for k = 1
4
· 10a − 1 (this is an integer because we have a� 1). Applying this

reduction step yields a curve Γ with the following data.

d [P] [Q] [Z]

16 2 5 7

This is exactly the data in the third bottom line of Table 4.4 in the special case and

we conclude the general case in exactly the same manner as we did the special case.

It follows that S must contain the union of all 24 planes Πi. Subtracting this

union from S we get a surface whose degree and vanishing orders at points Pi, Qj and

Zk have the same quotients as in the surface S. This implies that we can play the

reduction game with that surface and then with the surface obtain from that surface

by subtraction the union of Πi planes and so on. Since the procedure never stops (we

run ultimately in a contradiction with Bezout’s Theorem) we get a contradiction to

our assumption about the existence of S and we are done. �

4.4.1 Resurgence of F4

In this part we consider the resurgence of the F4 configuration. We were not able

to calculate its value but nevertheless we provide an upper bound and conjecture the

actual value.

To begin with, we consider the regularity of the F4 configuration. The following

date is computer generated but it can be verified in dull hand calculation.

We have

0→ R4(−6)⊕R(−8)
α−→ R16(−5)

βT

−→ R12(−4)
γ−→ I → 0,

where
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α =



0 −z 0 −z −1
2
x2z + 1

2
y2z − 1

2
z3 + 1

2
zw2

0 0 x −x xy2 − xw2

−w 0 0 0 −xyz
0 0 −y 0 0

0 0 z 0 0

0 0 −x 0 1
2
x3 − 1

2
xy2 − 1

2
xz2 + 1

2
xw2

0 0 y −y 1
2
x2y + 1

2
y3 − 1

2
yz2 − 1

2
yw2

x 0 0 0 yzw

0 0 −w w 1
2
x2w − 1

2
y2w − 1

2
z2w + 1

2
w3

0 x 0 x −xy2 + xz2

−y 0 0 0 −xzw
z 0 0 0 xyw

0 −y 0 0 0

0 w 0 0 0

0 0 0 −z 0

0 0 0 w 0


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β =



0 0 −x y 0 0 w 0 0 0 0 0

y −y −z 0 z 0 0 0 0 0 0 0

0 −z 0 −x y 0 0 0 0 0 0 0

−x −x 0 −z 0 0 0 0 0 0 0 0

0 0 0 0 −x 0 −w 0 0 0 0 0

y 0 −z 0 0 z 0 w 0 0 0 0

−x 0 0 −z 0 y 0 0 w 0 0 0

0 0 0 −w 0 0 −y 0 z 0 0 0

0 0 0 0 0 0 −z −x y 0 0 0

0 −y −z 0 0 0 0 0 0 w 0 0

0 0 0 0 −w 0 −x 0 0 z 0 0

0 −w 0 0 0 0 0 0 −x y 0 0

0 −x 0 −z 0 0 0 0 0 0 w 0

0 0 0 0 0 0 z 0 0 −x y 0

0 0 x 0 −x 0 −w 0 0 0 0 w

0 0 0 0 0 0 z x 0 −x 0 z



and one row matrix

γ = [z3w − zw3, x2zw − y2zw, y3w − yw3, xy2w − xz2w,
x2yw − yz2w, x3w − xw3, xyz2 − xyw2, y3z − yz3,
xy2z − xzw2, x2yz − yzw2, x3z − xz3, x3y − xy3]

and

reg(I) = max{4− 0, 5− 1, 8− 2, 6− 2} = 6.

Revoking Theorem 3.10 we obtain

3

2
≤ ρ(I) ≤ 9

4
.

The computer experiments we were able to carry out provided the data displayed in

Table 4.6.

r 1 2 3 4 5 6 7 8 9 10

m 1 2 3 5 7 8 9 11 13 14

m/r 1 1 1 1.25 1.4 1.33 1.28 1.37 1.44 1.4

Table 4.6: Non-containments I(m) 6⊂ Ir for small values of r and m.
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That data is so to interpret that for each r, the value of m is taken so that

I(m) 6⊂ Ir but I(m+1) ⊂ Ir.

Motivated by Table 4.6 we conclude this section with the following conjecture.

Conjecture 4.16

The resurgence of the F4 configuration is 3
2
.

4.5 A 20 points subset of F4

Here we study a configuration of points which does not come from any root system but

nevertheless fits nicely between the D4 and F4 configurations. It is interesting in the

context of our work because it is an instance where not only linear subspaces need to

be considered in order to compute the Waldschmidt constant. Specifically, we consider

the following set Z20 of 20 points.

Definition 4.17

Let Z20 be a configuration which contains all 12 points from D4 and additional 8 points

from F4, with the following coordinates:

P1 = [1 : −1 : 0 : 0] P2 = [0 : 1 : −1 : 0] P3 = [0 : 0 : 1 : −1]

P4 = [0 : 0 : 1 : 1] P5 = [1 : 0 : −1 : 0] P6 = [0 : 1 : 0 : −1]

P7 = [0 : 1 : 0 : 1] P8 = [1 : 0 : 0 : −1] P9 = [1 : 0 : 0 : 1]

P10 = [0 : 1 : 1 : 0] P11 = [1 : 0 : 1 : 0] P12 = [1 : 1 : 0 : 0]

P13 = [1 : 1 : 1 : 1] P14 = [−1 : −1 : 1 : 1] P15 = [−1 : 1 : 1 : −1]

P16 = [−1 : 1 : −1 : 1] P17 = [1 : 1 : 1 : −1] P18 = [1 : 1 : −1 : 1]

P19 = [1 : −1 : 1 : 1] P20 = [1 : −1 : −1 : −1]

Consider the following quadrics:

Q1 : x2 − y2 + z2 − w2 = 0,

Q2 : x2 + y2 − z2 − w2 = 0,

Q3 : x2 − y2 − z2 + w2 = 0.

Every quadric Qi contains 16 points from Z20. In the following table, we present

how the points are distributed on the quadrics.
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Q1: P1 P2 P3 P4 P8 P9 P10 P12

P13 P14 P15 P16 P17 P18 P19 P20

Q2: P2 P5 P6 P7 P8 P9 P10 P11

P13 P14 P15 P16 P17 P18 P19 P20

Q3: P1 P3 P4 P5 P6 P7 P11 P12

P13 P14 P15 P16 P17 P18 P19 P20.

Additionally consider the following 8 planes:

Π1 : x− y + z + w = 0 Π2 : x+ y + z + w = 0

Π3 : x− y + z − w = 0 Π4 : x+ y + z − w = 0

Π5 : x− y − z + w = 0 Π6 : x+ y − z + w = 0

Π7 : x− y − z − w = 0 Π8 : x+ y − z − w = 0.

Every plane Πi contains 9 points from Z20. Incidences between these planes and the

points in Z20 are presented next:

Π1: P3 P5 P7 P8 P10 P12 P17 P18 P20

Π2: P1 P2 P3 P5 P6 P8 P14 P15 P16

Π3: P4 P5 P6 P9 P10 P12 P13 P14 P15

Π4: P1 P2 P4 P5 P7 P9 P17 P18 P20

Π5: P2 P4 P7 P8 P11 P12 P13 P14 P16

Π6: P1 P4 P6 P8 P10 P11 P17 P19 P20

Π7: P2 P3 P6 P9 P11 P12 P17 P18 P19

Π8: P1 P3 P7 P9 P10 P11 P13 P15 P16

We aim to establish a connection between points on the quadrics Qi and the rul-

ings on each quadric. For this purpose, it is advantageous to employ the natural

parametrization of a smooth quadric in P3 through a suitable Segre map from P1×P1.

We provide specific parametrizations for each quadric Qi and explicitly identify the

preimages of points from Z20 on the factors P1 × P1. To avoid confusion, we acknowl-

edge that, by a slight abuse of notation, we employ the same symbols to denote points

in Z20 and their preimages.

The quadric Q1 is parametrized by

(s : t)× (u : v)→ (su+ tv : tv − su : tu− sv : sv + tu),

so that points in Z20 ∩ Q1 can be identified with points on P1 × P1 in the following

manner:

P1 = (1, 0)× (1, 0) P2 = (1, 1)× (1,−1)
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P3 = (1, 0)× (0, 1) P4 = (0, 1)× (1, 0)

P8 = (−1, 1)× (−1, 1) P9 = (1, 1)× (1, 1)

P10 = (1,−1)× (1, 1) P12 = (0, 1)× (0, 1)

P13 = (0, 1)× (1, 1) P14 = (1, 0)× (1,−1)

P15 = (1, 0)× (1, 1) P16 = (1, 0)× (−1, 1)

P17 = (1,−1)× (0,−1) P18 = (1, 1)× (0, 1)

P19 = (1, 1)× (1, 0) P20 = (−1, 1)× (1, 0).

The distribution of these points related to the product structure on P1 × P1 is

presented in Figure 4.7.

P 2

P 1

P 3

P 15

P 16

P 4 P 19P 20

P 9
P 13P 10

P 17 P 12 P 18

P 8 P 14

Figure 4.7: Quadric Q1

Passing to Q2 its parametrization is provided by

(s : t)× (u : v)→ (su+ tv : tu− sv : tv − su : sv + tu).

The points in Z20 ∩Q2 are then:

P2 = (1, 1)× (−1, 1) P5 = (1, 0)× (1, 0)

P6 = (1, 0)× (0, 1) P7 = (0, 1)× (1, 0)

P8 = (−1, 1)× (−1, 1) P9 = (1, 1)× (1, 1)
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P10 = (−1, 1)× (1, 1) P11 = (0, 1)× (0, 1)

P13 = (0, 1)× (1, 1) P14 = (1, 1)× (0, 1)

P15 = (1, 1)× (1, 0) P16 = (−1, 1)× (0, 1)

P17 = (1, 0)× (−1, 1) P18 = (0, 1)× (−1, 1)

P19 = (1, 0)× (1, 1) P20 = (−1, 1)× (1, 0).

The distribution of these points related to the product structure on P1 × P1 is

presented in Figure 4.8.

P 2

P 5

P 6

P 19

P 17

P 7 P 15P 20

P 9
P 13P 10

P 16 P 11 P 14

P 8 P 18

Figure 4.8: Quadric Q2

Finally we consider Q3 parametrized by the mapping

(s, t)× (u, v)→ (su+ tv : tv − su : sv + tu : tu− sv).

The points in Z20 ∩Q3 have then coordinates:

P1 = (1, 0)× (1, 0) P3 = (1, 0)× (0, 1)

P4 = (0, 1)× (1, 0) P5 = (−1, 1)× (−1, 1)

P6 = (1, 1)× (−1, 1) P7 = (−1, 1)× (1, 1)

P11 = (1, 1)× (1, 1) P12 = (0, 1)× (0, 1)

P13 = (0, 1)× (1, 1) P14 = (1, 1)× (1, 0)
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P15 = (−1, 1)× (0, 1) P16 = (1, 1)× (0, 1)

P17 = (0, 1)× (−1, 1) P18 = (1, 0)× (1, 1)

P19 = (1, 0)× (−1, 1) P20 = (−1, 1)× (1, 0).

The distribution of these points related to the product structure on P1 × P1 is

presented in Figure 4.9.

P 6

P 1

P 3

P 18

P 19

P 4 P 14P 20

P 11
P 13P 7

P 15 P 12 P 16

P 5 P 17

Figure 4.9: Quadric Q3

It follows immediately that points from Z20 in each of the quadrics Qi form a (4, 4)-

grid. Additionally, we observe that the points on each grid line are harmonic. To check

this claim, it suffices, by symmetry, to compute just one cross-ratio. We consider the

points P1, P14, P4, P20 and obtain with p = 1, q = −1:

[1 : −1 : 0 : 0] = p[1 : −1 : 1 : 1] + q[0 : 0 : 1 : 1].

Similarly, with r = 1, s = −2 we get

[1 : −1 : −1 : −1] = r[1 : −1 : 1 : 1] + s[0 : 0 : 1 : 1].

Consequently, the cross-ratio is equal to

−1 · 1
1 · (−2)

=
1

2
,

so the points are harmonic.
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Theorem 4.18

Waldschmidt constant for Z20 is equal to 7
3
.

Proof. Our proof here goes along the same lines as the proof of Theorem 4.15,

where we computed the Waldschmidt constant of the F4 configuration. In fact the

proof is much easier, because the divisor

D = Π1 + . . .+ Π8 +Q1 +Q2 +Q3

of degree 14 vanishes at all points of Z20 to the same order 6. This provides an upper

bound for α̂(Z20).

To see that it is also a lower bound, assume to the contrary that there exists a

surface S of degree d vanishing to multiplicity at least m at all points of Z20 with

d

m
<

7

3
.

Restricting S to every component of D, it is easy to show that S must contain every

component D as its own component. So there is a residual surface S ′ of degree d− 14

vanishing at all points of Z20 to order at least m− 6. Since

d− 14

m− 6
<

7

3
,

we can repeat the argument that S ′ contains D and continuing in this manner we arrive

to a contradiction.

�

We continue by considering the resurgence of the set of 20 points as above. We

have the following result.

Proposition 4.19

There is

ρ(I(Z20)) =
12

7
.

Proof. To begin with we note that the regularity of I = I(Z20) is 4.

Taking this for granted for the moment, the claim of the Proposition follows imme-

diately by Theorem 3.10. Indeed, we have

12

7
=
α(I)

α̂(I)
6

reg(I)

α̂(I)
=

12

7
,

Turning back to the regularity, we have the following resolution of I

0→ R10(−6)
α−→ R24(−5)

βT

−→ R15(−4)
γ−→ I → 0.
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The matrices of the maps appearing in the resolution have the following form:

α =



0 −z 0 −z w 0 0 0 x 0

0 0 x −x 0 0 0 y 0 −w
−w 0 0 0 0 0 −x −z 0 0

0 0 −y 0 0 w 0 −x 0 0

0 0 z 0 w 0 0 0 −x 0

0 0 −x 0 0 0 0 −y z 0

0 0 y −y 0 0 −z x 0 0

x 0 0 0 y 0 w 0 0 0

0 0 −w w −z 0 0 0 0 x

0 x 0 x 0 0 0 −y −z 0

−y 0 0 0 −x 0 0 0 w 0

z 0 0 0 0 −x 0 w 0 0

0 −y 0 0 0 0 z x 0 0

0 w 0 0 −z 0 0 0 0 −x
0 0 0 −z 0 0 −y 0 x 0

0 0 0 w 0 −y 0 0 0 x

0 0 0 0 x 0 0 0 0 −z
0 0 0 0 y 0 −w 0 0 0

0 0 0 0 0 x 0 0 0 y

0 0 0 0 0 z w 0 0 0

0 0 0 0 0 0 0 −z −y 0

0 0 0 0 0 0 x 0 y 0

0 0 0 0 0 0 0 w 0 −y
0 0 0 0 0 0 0 0 w z


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β =



0 0 −x y 0 0 w 0 0 0 0 0 0 0 0

y −y −z 0 z 0 0 0 0 0 0 0 0 0 0

0 −z 0 −x y 0 0 0 0 0 0 0 0 0 0

−x −x 0 −z 0 z 0 0 0 0 0 0 0 0 0

0 0 0 0 −x y −w 0 0 0 0 0 0 0 0

y 0 −z 0 0 0 0 0 w 0 0 0 0 0 0

−x 0 0 −z 0 0 0 0 0 w 0 0 0 0 0

0 0 0 −w 0 0 −y 0 0 z 0 0 0 0 0

0 0 0 0 0 0 −z 0 −x y 0 0 0 0 0

0 −y −z 0 0 0 0 0 0 0 w 0 0 0 0

0 0 0 0 −w 0 −x 0 0 0 z 0 0 0 0

0 −w 0 0 0 0 0 0 0 −x y 0 0 0 0

0 −x 0 −z 0 0 0 0 0 0 0 w 0 0 0

0 0 0 0 0 0 z 0 0 0 −x y 0 0 0

0 0 x 0 −x 0 −w 0 0 0 0 0 0 w 0

0 0 0 0 0 0 z 0 x 0 −x 0 0 z 0

0 0 w 0 0 0 −x y −z 0 0 0 0 0 0

0 0 0 0 0 −w y −x 0 0 0 z 0 0 0

w 0 0 0 0 0 0 0 y −x 0 0 z 0 0

0 0 0 w 0 −w y 0 0 0 0 0 −x y 0

0 z y 0 0 −x 0 −w 0 0 0 0 0 0 w

−z 0 y −x 0 0 0 −w 0 0 0 0 w 0 0

0 w 0 0 0 0 0 −z y 0 0 −x 0 0 z

0 0 0 0 w 0 0 0 −z 0 0 0 −y −x y

0 0 0 0 w 0 0 0 −z 0 0 0 −y −x y


and a row vector of all 15 generators of I:
γ = [z3w − zw3, x2zw − y2zw, y3w − yw3,

xy2w − xz2w, x2yw − yz2w, x3w − xw3,

xyz2 − xyw2, x2z2 + y2z2 − z4 − x2w2 − y2w2 + w4,

y3z − yz3, xy2z − xzw2, x2yz − yzw2,

x3z − xz3, x2y2 − y4 + y2z2 − x2w2 − z2w2 + w4,

x3y − xy3, x4 − y4 + y2z2 − z4 − x2w2 + w4]

It follows that the regularity of the ideal of Z20 is 4. �
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4.6 The H4 root system

In this part we describe the highly symmetric configuration, namely the H4 configura-

tion coming from the H4 root system. This system is a little bit different from those

considered so far, because it is not crystalographic.

Definition 4.20

Let Z(H4) be the set of 60 points, which in suitable coordinates can be take as in the

following list:

P1 = [1 : 0 : 0 : 0] , P2 = [0 : 1 : 0 : 0] , P3 = [0 : 0 : 1 : 0] ,

P4 = [0 : 0 : 0 : 1] , P5 = [1 : 1 : 1 : 1] , P6 = [1 : 1 : 1 : −1] ,

P7 = [1 : 1 : −1 : 1] , P8 = [1 : 1 : −1 : −1] , P9 = [1 : −1 : 1 : 1] ,

P10 = [1 : −1 : 1 : −1] , P11 = [1 : −1 : −1 : 1] , P12 = [1 : −1 : −1 : −1] ,

P13 = [0 : ϕ : ϕ2 : 1] , P14 = [0 : ϕ : ϕ2 : −1] , P15 = [0 : ϕ : −ϕ2 : 1] ,

P16 = [0 : ϕ : −ϕ2 : −1] , P17 = [0 : ϕ2 : 1 : ϕ] , P18 = [0 : ϕ2 : 1 : −ϕ] ,

P19 = [0 : ϕ2 : −1 : ϕ] , P20 = [0 : ϕ2 : −1 : −ϕ] , P21 = [0 : 1 : ϕ : ϕ2] ,

P22 = [0 : 1 : ϕ : −ϕ2] , P23 = [0 : 1 : −ϕ : ϕ2] , P24 = [0 : 1 : −ϕ : −ϕ2] ,

P25 = [ϕ : 0 : 1 : ϕ2] , P26 = [ϕ : 0 : 1 : −ϕ2] , P27 = [ϕ : 0 : −1 : ϕ2] ,

P28 = [ϕ : 0 : −1 : −ϕ2] , P29 = [ϕ2 : 0 : ϕ : 1] , P30 = [ϕ2 : 0 : ϕ : −1] ,

P31 = [ϕ2 : 0 : −ϕ : 1] , P32 = [ϕ2 : 0 : −ϕ : −1] , P33 = [1 : 0 : ϕ2 : ϕ] ,

P34 = [1 : 0 : ϕ2 : −ϕ] , P35 = [1 : 0 : −ϕ2 : ϕ] , P36 = [1 : 0 : −ϕ2 : −ϕ] ,

P37 = [ϕ : ϕ2 : 0 : 1] , P38 = [ϕ : ϕ2 : 0 : −1] , P39 = [ϕ : −ϕ2 : 0 : 1] ,

P40 = [ϕ : −ϕ2 : 0 : −1] , P41 = [ϕ2 : 1 : 0 : ϕ] , P42 = [ϕ2 : 1 : 0 : −ϕ] ,

P43 = [ϕ2 : −1 : 0 : ϕ] , P44 = [ϕ2 : −1 : 0 : −ϕ] , P45 = [1 : ϕ : 0 : ϕ2] ,

P46 = [1 : ϕ : 0 : −ϕ2] , P47 = [1 : −ϕ : 0 : ϕ2] , P48 = [1 : −ϕ : 0 : −ϕ2] ,

P49 = [ϕ : 1 : ϕ2 : 0] , P50 = [ϕ : 1 : −ϕ2 : 0] , P51 = [ϕ : −1 : ϕ2 : 0] ,

P52 = [ϕ : −1 : −ϕ2 : 0] , P53 = [ϕ2 : ϕ : 1 : 0] , P54 = [ϕ2 : ϕ : −1 : 0] ,

P55 = [ϕ2 : −ϕ : 1 : 0] , P56 = [ϕ2 : −ϕ : −1 : 0] , P57 = [1 : ϕ2 : ϕ : 0] ,

P58 = [1 : ϕ2 : −ϕ : 0] , P59 = [1 : −ϕ2 : ϕ : 0] , P60 = [1 : −ϕ2 : −ϕ : 0] ,

where ϕ denotes the golden ratio. We refer to this set of points as the H4 configuration

of points.

The choice of particular coordinates does not influence our considerations as the fol-

lowing Remark explains.

72



Remark 4.21

Up to a projective change of coordinates, there is just one way to embed H4 into P3,

see [1].

The set ZH4 determines 60 dual planes V1, . . . , V60, which we consider in the same

P3 rather than in the dual space. More specifically, for Pi = [a : b : c : d] we define

Vi = {ax+ by + cz + dw = 0}.

Pi = [a : b : c : d]

Vi = {ax+ by + cz + dw = 0}

Figure 4.10: Dual plane

These points and planes form a symmetric (6015)-configuration of points and planes,

which means that there are 15 points in each plane and 15 planes pass through each

point. We call the planes Vi the 15-reach planes to indicate that they contain 15 points

from the H4 configuration. Specific incidences between the configuration points and the

15-reach planes are listed in Table 5.2 in which the points are represented by numbers

only.

In each of these planes, the 15 distinguished points form an H3 configuration, which

was presented previously. This is indicated in Figure 4.1 in affine coordinates (x, y),

where {z = 0} is the line at the infinity.

Additional collinearities, which are of interest to us, determine 72 lines which con-

tain exactly 5 configuration points (and which we call 5-reach lines for this reason).

Moreover, 5 is the maximal number of collinear points in the configuration.

Through each point of configuration there are exactly six 5-reach lines passing. The

incidences are indicated in Table 5.3 where points are represented again by numbers

only.

Because of the duality between points Pi and planes Vi, each of the 5-reach lines is

contained in exactly 5 of the 15-reach planes and each of these planes contain exactly

six 5-reach lines.
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One could naively expect that the 60 planes dual to the 60 points in ZH4 provide

a divisor computing the Waldschmidt constant α̂(ZH4). This is however not true for

very fundamental reasons which we state now.

Lemma 4.22

Let Z be a set of s points in PN . Then

α̂(Z) ≤ N
√
s.

Proof. We sketch a proof for lack of reference. There is the following bound

α(I
(m)
Z ) ≤ d(m),

where d(m) is the least integer d such that(
d+N

N

)
> s

(
m+N − 1

N

)
. (4.6)

Comparing the leading terms on both sides of (4.6) (in d on the left and in m on the

right), we see that the inequality holds for large m and d provided d > m N
√
s. Since

our statement is asymptotic, we may take d(m) = bm N
√
s+ 1c and the claim follows.

�

Now, the arrangement of 60 planes dual to points in the H4 configuration gives

α(I(ZH4)
(15)) ≤ 60,

hence

α̂(ZH4) ≤ 4.

But from Lemma 4.22 we derive immediately the following consequence.

Corollary 4.23

For the Waldschmidt constant of ZH4 we have

α̂(ZH4) ≤
3
√

60 ∼= 3.9.

However, using symbolic computations we were able to detect 4 generators of degree

19 in I(ZH4)
(15), so that we have.

Theorem 4.24

The Waldschmidt constant of the H4 configuration of points satisfies

α̂(ZH4) ≤
19

5
= 3.8.
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We were not able neither to explain the existence of the aforementioned surfaces of

degree 19 with singularities of multiplicity at least 5 at all points of H4, nor could we

proof that the actual value of the Waldschmidt constant is not strictly less than 3.8.

Thus the determination of the exact value of the Waldschmidt constant for the H4

configuration remains an intriguing open problem.
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5 Properties of general projections of sym-

metric sets of points in projective spaces

In the last section, we change the course of our research and focus on properties of

general projections a symmetric set of points in projective spaces. This part grew out

from a study paralleling the main subject of this thesis and was carried out with Maciej

Zięba. I am grateful to him for allowing me to include our results in my thesis.

The motivation for this part of our work comes from Polizzi’s question asked over 12

years ago on Math-Overflow (see: https://mathoverflow.net/questions/67265/when-is-

a-general-projection-of-d2-points-in-mathbbp3-a-complete-inters): Do there exist sets

of points Z in P3 such that the general projection of Z to P2 is a complete intersection?

The following notion was introduced in [26].

Definition 5.1 (Geproci)

We say that a finite set Z ⊂ P3 has a geproci property (the acronim comes from:

GEneral PROjection is a Complete Intersection), if its projection from a general point

in P3 to P2 is a complete intersection.

In 2011, Dmitri Panov answered the above question pointing out that grids have

the property stipulated by Polizzi. Two remarks are here in place.

Remark 5.2

An (a, b)-grid is non-degenerate for b ≥ a ≥ 2.

Remark 5.3

An (a, b)-grid has the geproci property.

After Panov’s answer Polizzi edited his post and asked:

1. Are there other (than grids) configurations of points with the same property?

2. It is possible to classify them up to projective transformations (at least for small

numbers of points)?
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These questions have been considered in Levico Terme in 2018 during the workshop

on Lefschetz Properties and Jordan Type in Algebra, Geometry and Combinatorics by

A. Bernardi, L. Chiantini, G. Denham, G. Favacchio, B. Harbourne, J. Migliore, T.

Szemberg and J. Szpond. This working group considered unexpected surfaces. In

particular they considered the F4 configuration and observed that this root system

does not form a (4, 6)–grid but its general projection is a complete intersection of type

(4, 6).

The set F4 is contained in 6 disjoint lines:

z = w = 0, x = y = 0, x− z = y − w = 0,

x+ z = y + w = 0, x− w = y + z = 0, x+ w = y − z = 0

and there are 4 configuration points on each of these lines.

During the same workshop in Levico Terme the working group considered the root

system D4 from the same perspective. In this case the general projection is also a

complete intersection and this sets of 12 points is not a (3, 4)–grid, (see [23]).

In 2020 Pokora, Szemberg and Szpond introduced the notion of half-grids, [26].

Definition 5.4 (Half-grid)

Let a and b be positive integers. A set Z of a · b points in P3 is an (a, b)-half-grid if

there exists a set of mutually skew lines L1, . . . , La covering Z and a general projection

of Z to a hyperplane is a complete intersection of images of the lines with a (possibly

reducible) curve of degree b.

This situation is visualized in Figure 5.1.:
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P3

π

P2

Figure 5.1: Half-grid

The three authors mentioned above found an interesting set of 60 points in P3,

which, like F4, is a half-grid rather than a grid. In particular they showed with their

example than not all geproci sets are defined by root systems.

Definition 5.5

The set Z60 is called Klein configuration, which can be assigned the following coordi-

nates:

P1 = [0 : 0 : 1 : 1] P2 = [0 : 0 : 1 : i] P3 = [0 : 0 : 1 : −1]

P4 = [0 : 0 : 1 : −i] P5 = [0 : 1 : 0 : 1] P6 = [0 : 1 : 0 : i]

P7 = [0 : 1 : 0 : −1] P8 = [0 : 1 : 0 : −i] P9 = [0 : 1 : 1 : 0]

P10 = [0 : 1 : i : 0] P11 = [0 : 1 : −1 : 0] P12 = [0 : 1 : −i : 0]

P13 = [1 : 0 : 0 : 1] P14 = [1 : 0 : 0 : i] P15 = [1 : 0 : 0 : −1]

P16 = [1 : 0 : 0 : −i] P17 = [1 : 0 : 1 : 0] P18 = [1 : 0 : i : 0]

P19 = [1 : 0 : −1 : 0] P20 = [1 : 0 : −i : 0] P21 = [1 : 1 : 0 : 0]

P22 = [1 : i : 0 : 0] P23 = [1 : −1 : 0 : 0] P24 = [1 : −i : 0 : 0]

P25 = [1 : 0 : 0 : 0] P26 = [0 : 1 : 0 : 0] P27 = [0 : 0 : 1 : 0]
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P28 = [0 : 0 : 0 : 1] P29 = [1 : 1 : 1 : 1] P30 = [1 : 1 : 1 : −1]

P31 = [1 : 1 : −1 : 1] P32 = [1 : 1 : −1 : −1] P33 = [1 : −1 : 1 : 1]

P34 = [1 : −1 : 1 : −1] P35 = [1 : −1 : −1 : 1] P36 = [1 : −1 : −1 : −1]

P37 = [1 : 1 : i : i] P38 = [1 : 1 : i : −i] P39 = [1 : 1 : −i : i]

P40 = [1 : 1 : −i : −i] P41 = [1 : −1 : i : i] P42 = [1 : −1 : i : −i]
P43 = [1 : −1 : −i : i] P44 = [1 : −1 : −i : −i] P45 = [1 : i : 1 : i]

P46 = [1 : i : 1 : −i] P47 = [1 : −i : 1 : i] P48 = [1 : −i : 1 : −i]
P49 = [1 : i : −1 : i] P50 = [1 : i : −1 : −i] P51 = [1 : −i : −1 : i]

P52 = [1 : −i : −1 : −i] P53 = [1 : i : i : 1] P54 = [1 : i : −i : 1]

P55 = [1 : −i : i : 1] P56 = [1 : −i : −i : 1] P57 = [1 : i : i : −1]

P58 = [1 : i : −i : −1] P59 = [1 : −i : i : −1] P60 = [1 : −i : −i : −1] .

Theorem 5.6

The Klein configuration is (6, 10)-geproci.

Inspired by this result, they asked if all geproci sets of points in P3 are half-grids.

Establishing such a fact would provide a major step towards the classification of all

geproci sets of points in P3. Somewhat disappointingly, we show that this is not the

case. Our main result is thus the following.

Theorem 5.7

The H4 configuration of points in P3 has the geproci property and it is neither a half-grid

nor a grid.

Proof. We begin by showing that H4 root system has the geproci property. More

precisely we will show that a general projection of H4 to P2 is a (6, 10) complete

intersection.

To this end let P be a general point in P3. Thus, in particular, P is not contained

in any of the flats described in previous chapter. Let

πP : P3 99K P2

be the projection from P .

The existence of a unique cone of degree 6 with vertex at P vanishing along the set

H4 was established in [23, Section 3.7]. We checked, using our Singular script, that this

cone is smooth apart from its vertex. It implies that πP (H4) is contained in a unique

smooth curve C6 of degree 6. It is visualised at Figure 5.2
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πP (P1)

C6

Figure 5.2: Projection

Thus, it remains to establish the existence of a curve of degree 10, not containing

C6 as a component, and vanishing at all points of πP (H4). In the course we will reveal

additional nice properties of the set H4.

To begin with note that the following two sets of lines:

L1 = `1, L2 = `25, L3 = `32, L4 = `37, L5 = `44,

M1 = `2, M2 = `26, M3 = `31, M4 = `38, M5 = `43

form a (5, 5)-grid which consists of 25 points with the following numbers:

1, 5, 6, 7, 8, 13, 14, 15, 16, 29, 30, . . . , 38, 41, 42, 51, 52, 57, 58.

It was established in [8, Remark 3.4] that all (a, b)-grids with a, b ≥ 3 are contained in

a quadric. In our case the equation of this quadric is:

Q1 : 2xy − y2 + (ϕ− 1)z2 − ϕw2 = 0.

Let gi be the equation of the plane generated by Li and P with i ∈ {1, ..., 5}. Similarly,

denote by hi the equation of the plane spanned by Mi and P with i ∈ {1, ..., 5}. Then
the products

g = g1 · . . . · g5 and h = h1 · . . . · h5

generate a pencil of cones of degree 5 with vertex at P vanishing at all points of the

(5, 5)-grid. It is easy to check that this pencil has no additional base lines apart of
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those joining P and the points in the grid. We impose one more vanishing condition

by requiring a member of this pencil to vanish at P4. This point is distinguished by

the following property: There are 10 lines passing through P4 which meet the quadric

Q1 in two points from the grid. More precisely the points in the grid are grouped by

these incidences in pairs as follows:

{{5, 6}, {7, 8}, {13, 14}, {15, 16}, {29, 30},

{31, 32}, {33, 34}, {35, 36}, {37, 38}, {41, 42}}.

There are exactly 4 more points in the configuration which have the same property,

i.e., for each of them there are 10 lines intersecting Q1 in pairs of points from the grid.

These points are: P39, P40, P47 and P48. Together with P4 these points lie on the line

`24. It is easy to check by computer that the member of the pencil vanishing at P4

vanishes at all other points of the configuration contained in the line `24.

Thus in this part of the proof we established the existence of a cone C5 of degree 5

with vertex at P vanishing at half of the points of the configuration:

Z1 : 1, 4, 5, 6, 7, 8, 13, 14, 15, 16, 29, 30, . . . , 42, 47, 48, 51, 52, 57, 58.

This cone is smooth away of its vertex, hence there exists a smooth curve Γ5 vanishing

at all points of πP (Z1). These 30 points are by construction contained in 6 disjoint

lines. One can take, for example, lines from the L set and line `24, so that we have

Z1 ⊂ `1 ∪ `24 ∪ `25 ∪ `32 ∪ `37 ∪ `44.

This implies that π(Z1) is a (5, 6)-complete intersection. In particular, Z1 has the

geproci property and it is a half-grid!

It is natural to wonder what properties does the residual set

Z2 = Z \ Z1

enjoy. In a sense it is surprising that exactly the same as Z1! We have a grid determined

by lines

L′1 = `7, L
′
2 = `51, L

′
3 = `60, L

′
4 = `65, L

′
5 = `70,

M ′
1 = `8, M

′
2 = `54, M

′
3 = `58, M

′
4 = `63, M

′
5 = `71,

which is contained in the quadric

Q2 : x2 + 2xy + ϕz2 − (ϕ− 1)w2.
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The line external to the quadric is `17. As before, the projection of Z2 to P2 is the

intersection of a smooth curve Γ′5 of degree 5 and projection of 6 lines, for example the

lines `7, `17, `51, `60, `65, `70. So Z2 is also a geproci set and a half-grid.

The upshot of these considerations is that Z is contained in a cone of degree 10 with

vertex at P , namely the union C5 ∪ C ′5 and consequently πP (Z) is a (6, 10)-complete

intersection.

It remains to check that H4 is not a half-grid. It is so for the simple reason that

there are no lines containing 6 or more points from Z. �

Remark 5.8

It is worth pointing out that even if Z is not a half-grid, it is a union of two such sets.

In particular, it can be completely covered by a union of 12 skew 5-reach lines.

Interestingly, there are 84 different ways to cover Z by 12 disjoint 5-reach lines. These

coverings are indicated in Table 5.4, where this time lines are represented by numbers

only.
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Appendix

Programme to calculate Waldschmidt constant for con-

figuration H4

LIB "primdec.lib";

option(redSB);

ring R2=(32003,u),(x,y,z,w),dp;

minpoly=u2-u-1;

//Ideal of point

proc point_ideal(list point) {

matrix m[2][4] = point[1], point[2], point[3], point[4], x, y, z, w;

ideal I = minor(m,2);

I = std(I);

return(I);

}

//Intersections with ideals of points

proc intersections_of_points_ideals(list points, int power){

ideal I = point_ideal(points[1])^power;

for(int point_index = 2; point_index <= size(points); point_index++){

I = intersect(I, point_ideal(points[point_index])^power);

}

return(I);

}

//Calculate how many polys for each degree of intersections

proc how_many_polys_for_each_degree_of_intersections(ideal I){
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print_and_write("Repetitions times for degree of intersections polys:");

int degree_repetitions = 1;

int poly_degree = deg(I[1]);

int current_degree = 0;

for(int poly_idx = 2; poly_idx <= size(I); poly_idx++) {

current_degree = deg(I[poly_idx]);

// degree is the same, only add to repetitions

if (current_degree == poly_degree){

degree_repetitions = degree_repetitions + 1;

}

// degree is different

else {

print_and_write("Poly degree: " + string(poly_degree) + " repeated "

+ string(degree_repetitions) + " times");

degree_repetitions = 1;

poly_degree = current_degree;

}

}

print_and_write("Poly degree: " + string(poly_degree) + " repeated " +

string(degree_repetitions) + " times");

}

//Initial degree of intersections

proc alpha(ideal I){

return(deg(I[1]));

}

//Waldschmidt constant

proc calculate_waldschmidt_constant(ideal I, number power){

return(alpha(I)/power);

}

//Save to file and print to console

proc print_and_write(string text){

print(text);
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write(file_to_write, text);

}

//Calculate Waldschmidt constants for next powers

proc waldschmidt_constants_for_powers(list points, int max_power){

int initial_degree;

number waldschmidt_constant;

ideal I;

for(int power = 1; power <= max_power; power++){

print_and_write("Waldschmidt Constant for power: " + string(power));

I = intersections_of_points_ideals(points, power);

print_and_write("");

print_and_write("First poly of intersections of ideals of points for

power: " + string(power));

print_and_write(string(I[1]));

print_and_write("");

how_many_polys_for_each_degree_of_intersections(I);

initial_degree = alpha(I);

waldschmidt_constant = calculate_waldschmidt_constant(I, power);

print_and_write("");

print_and_write("Initial degree for first poly: " +

string(initial_degree));

print_and_write("Factorize for first poly: ");

factorize(I[1]);

write(file_to_write, factorize(I[1]));

print_and_write("Waldschmidt Constant: " +

string(waldschmidt_constant));

print_and_write("------------------------------------");

}

}

//Save results to this file

string file_to_write = "waldschmidt_constant_for_powers_result.txt";

//List of points for configuration H4

list points =
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list(1,0,0,0), list(0,1,0,0), list(0,0,1,0), list(0,0,0,1), list(1,1,1,1),

list(1,1,1,-1), list(1,1,-1,1), list(1,1,-1,-1), list(1,-1,1,1),

list(1,-1,1,-1), list(1,-1,-1,1), list(1,-1,-1,-1),list(0,u,u^2,1),

list(0,u,u^2,-1), list(0,u,-u^2,1), list(0,u,-u^2,-1),

list(0,u^2,1,u), list(0,u^2,1,-u),

list(0,u^2,-1,u), list(0,u^2,-1,-u), list(0,1,u,u^2), list(0,1,u,-u^2),

list(0,1,-u,u^2), list(0,1,-u,-u^2), list(u,0,1,u^2),

list(u,0,1,-u^2), list(u,0,-1,u^2),

list(u,0,-1,-u^2), list(u^2,0,u,1), list(u^2,0,u,-1), list(u^2,0,-u,1),

list(u^2,0,-u,-1), list(1,0,u^2,u), list(1,0,u^2,-u),

list(1,0,-u^2,u), list(1,0,-u^2,-u),

list(u,u^2,0,1), list(u,u^2,0,-1), list(u,-u^2,0,1), list(u,-u^2,0,-1),

list(u^2,1,0,u), list(u^2,1,0,-u), list(u^2,-1,0,u),

list(u^2,-1,0,-u), list(1,u,0,u^2),

list(1,u,0,-u^2), list(1,-u,0,u^2), list(1,-u,0,-u^2), list(u,1,u^2,0),

list(u,1,-u^2,0), list(u,-1,u^2,0), list(u,-1,-u^2,0),

list(u^2,u,1,0), list(u^2,u,-1,0),

list(u^2,-u,1,0), list(u^2,-u,-1,0), list(1,u^2,u,0), list(1,u^2,-u,0),

list(1,-u^2,u,0), list(1,-u^2,-u,0);

int max_power = 2;

//Write to file

write(":w " + file_to_write, "");

waldschmidt_constants_for_powers(points, max_power);

Incidences of points and 15-reach planes

In this part we present the incidences between points in the configuration H4 and their

dual planes.

Table 5.2: Incidences of points and 15-reach planes

V1 : 2, 3, 4, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

V2 : 1, 3, 4, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36

V3 : 1, 2, 4, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48

V4 : 1, 2, 3, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
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V5 : 8, 10, 11, 15, 20, 22, 26, 32, 35, 39, 44, 46, 50, 56, 59

V6 : 7, 9, 12, 16, 19, 21, 25, 31, 36, 40, 43, 45, 50, 56, 59

V7 : 6, 9, 12, 13, 18, 24, 28, 30, 33, 39, 44, 46, 49, 55, 60

V8 : 5, 10, 11, 14, 17, 23, 27, 29, 34, 40, 43, 45, 49, 55, 60

V9 : 6, 7, 12, 14, 17, 23, 26, 32, 35, 37, 42, 48, 52, 54, 57

V10 : 5, 8, 11, 13, 18, 24, 25, 31, 36, 38, 41, 47, 52, 54, 57

V11 : 5, 8, 10, 16, 19, 21, 28, 30, 33, 37, 42, 48, 51, 53, 58

V12 : 6, 7, 9, 15, 20, 22, 27, 29, 34, 38, 41, 47, 51, 53, 58

V13 : 1, 7, 10, 20, 23, 26, 27, 42, 43, 46, 47, 54, 55, 58, 59

V14 : 1, 8, 9, 19, 24, 25, 28, 41, 44, 45, 48, 54, 55, 58, 59

V15 : 1, 5, 12, 18, 21, 25, 28, 42, 43, 46, 47, 53, 56, 57, 60

V16 : 1, 6, 11, 17, 22, 26, 27, 41, 44, 45, 48, 53, 56, 57, 60

V17 : 1, 8, 9, 16, 22, 30, 31, 34, 35, 42, 43, 46, 47, 50, 51

V18 : 1, 7, 10, 15, 21, 29, 32, 33, 36, 41, 44, 45, 48, 50, 51

V19 : 1, 6, 11, 14, 24, 29, 32, 33, 36, 42, 43, 46, 47, 49, 52

V20 : 1, 5, 12, 13, 23, 30, 31, 34, 35, 41, 44, 45, 48, 49, 52

V21 : 1, 6, 11, 15, 18, 30, 31, 34, 35, 38, 39, 54, 55, 58, 59

V22 : 1, 5, 12, 16, 17, 29, 32, 33, 36, 37, 40, 54, 55, 58, 59

V23 : 1, 8, 9, 13, 20, 29, 32, 33, 36, 38, 39, 53, 56, 57, 60

V24 : 1, 7, 10, 14, 19, 30, 31, 34, 35, 37, 40, 53, 56, 57, 60

V25 : 2, 6, 10, 14, 15, 32, 34, 38, 40, 42, 44, 50, 52, 58, 60

V26 : 2, 5, 9, 13, 16, 31, 33, 37, 39, 41, 43, 50, 52, 58, 60

V27 : 2, 8, 12, 13, 16, 30, 36, 38, 40, 42, 44, 49, 51, 57, 59

V28 : 2, 7, 11, 14, 15, 29, 35, 37, 39, 41, 43, 49, 51, 57, 59

V29 : 2, 8, 12, 18, 19, 22, 23, 28, 35, 46, 48, 50, 52, 58, 60

V30 : 2, 7, 11, 17, 20, 21, 24, 27, 36, 45, 47, 50, 52, 58, 60

V31 : 2, 6, 10, 17, 20, 21, 24, 26, 33, 46, 48, 49, 51, 57, 59

V32 : 2, 5, 9, 18, 19, 22, 23, 25, 34, 45, 47, 49, 51, 57, 59

V33 : 2, 7, 11, 18, 19, 22, 23, 26, 31, 38, 40, 42, 44, 54, 56

V34 : 2, 8, 12, 17, 20, 21, 24, 25, 32, 37, 39, 41, 43, 54, 56

V35 : 2, 5, 9, 17, 20, 21, 24, 28, 29, 38, 40, 42, 44, 53, 55

V36 : 2, 6, 10, 18, 19, 22, 23, 27, 30, 37, 39, 41, 43, 53, 55

V37 : 3, 9, 11, 22, 24, 26, 28, 34, 36, 44, 47, 51, 52, 55, 56

V38 : 3, 10, 12, 21, 23, 25, 27, 33, 35, 43, 48, 51, 52, 55, 56
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V39 : 3, 5, 7, 21, 23, 26, 28, 34, 36, 42, 45, 49, 50, 53, 54

V40 : 3, 6, 8, 22, 24, 25, 27, 33, 35, 41, 46, 49, 50, 53, 54

V41 : 3, 10, 12, 14, 16, 18, 20, 26, 28, 34, 36, 40, 46, 59, 60

V42 : 3, 9, 11, 13, 15, 17, 19, 25, 27, 33, 35, 39, 45, 59, 60

V43 : 3, 6, 8, 13, 15, 17, 19, 26, 28, 34, 36, 38, 48, 57, 58

V44 : 3, 5, 7, 14, 16, 18, 20, 25, 27, 33, 35, 37, 47, 57, 58

V45 : 3, 6, 8, 14, 16, 18, 20, 30, 32, 39, 42, 51, 52, 55, 56

V46 : 3, 5, 7, 13, 15, 17, 19, 29, 31, 40, 41, 51, 52, 55, 56

V47 : 3, 10, 12, 13, 15, 17, 19, 30, 32, 37, 44, 49, 50, 53, 54

V48 : 3, 9, 11, 14, 16, 18, 20, 29, 31, 38, 43, 49, 50, 53, 54

V49 : 4, 7, 8, 19, 20, 27, 28, 31, 32, 39, 40, 47, 48, 56, 58

V50 : 4, 5, 6, 17, 18, 25, 26, 29, 30, 39, 40, 47, 48, 55, 57

V51 : 4, 11, 12, 17, 18, 27, 28, 31, 32, 37, 38, 45, 46, 54, 60

V52 : 4, 9, 10, 19, 20, 25, 26, 29, 30, 37, 38, 45, 46, 53, 59

V53 : 4, 11, 12, 15, 16, 23, 24, 35, 36, 39, 40, 47, 48, 52, 59

V54 : 4, 9, 10, 13, 14, 21, 22, 33, 34, 39, 40, 47, 48, 51, 60

V55 : 4, 7, 8, 13, 14, 21, 22, 35, 36, 37, 38, 45, 46, 50, 57

V56 : 4, 5, 6, 15, 16, 23, 24, 33, 34, 37, 38, 45, 46, 49, 58

V57 : 4, 9, 10, 15, 16, 23, 24, 27, 28, 31, 32, 43, 44, 50, 55

V58 : 4, 11, 12, 13, 14, 21, 22, 25, 26, 29, 30, 43, 44, 49, 56

V59 : 4, 5, 6, 13, 14, 21, 22, 27, 28, 31, 32, 41, 42, 52, 53

V60 : 4, 7, 8, 15, 16, 23, 24, 25, 26, 29, 30, 41, 42, 51, 54

Incidences between the H4 configuration points and the

5-reach lines

We present the incidences between the configuration points and the 5-reach lines

Table 5.3: Incidences of points and 5-reach line

`1 : 1, 29, 32, 33, 36 `2 : 1, 30, 31, 34, 35 `3 : 1, 41, 44, 45, 48

`4 : 1, 42, 43, 46, 47 `5 : 1, 53, 56, 57, 60 `6 : 1, 54, 55, 58, 59

`7 : 2, 17, 20, 21, 24 `8 : 2, 18, 19, 22, 23 `9 : 2, 37, 39, 41, 43

`10 : 2, 38, 40, 42, 44 `11 : 2, 49, 51, 57, 59 `12 : 2, 50, 52, 58, 60

`13 : 3, 13, 15, 17, 19 `14 : 3, 14, 16, 18, 20 `15 : 3, 25, 27, 33, 35
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`16 : 3, 26, 28, 34, 36 `17 : 3, 49, 50, 53, 54 `18 : 3, 51, 52, 55, 56

`19 : 4, 13, 14, 21, 22 `20 : 4, 15, 16, 23, 24 `21 : 4, 25, 26, 29, 30

`22 : 4, 27, 28, 31, 32 `23 : 4, 37, 38, 45, 46 `24 : 4, 39, 40, 47, 48

`25 : 5, 13, 31, 41, 52 `26 : 5, 16, 33, 37, 58 `27 : 5, 17, 29, 40, 55

`28 : 5, 18, 25, 47, 57 `29 : 5, 21, 28, 42, 53 `30 : 5, 23, 34, 45, 49

`31 : 6, 14, 32, 42, 52 `32 : 6, 15, 34, 38, 58 `33 : 6, 17, 26, 48, 57

`34 : 6, 18, 30, 39, 55 `35 : 6, 22, 27, 41, 53 `36 : 6, 24, 33, 46, 49

`37 : 7, 14, 35, 37, 57 `38 : 7, 15, 29, 41, 51 `39 : 7, 19, 31, 40, 56

`40 : 7, 20, 27, 47, 58 `41 : 7, 21, 36, 45, 50 `42 : 7, 23, 26, 42, 54

`43 : 8, 13, 36, 38, 57 `44 : 8, 16, 30, 42, 51 `45 : 8, 19, 28, 48, 58

`46 : 8, 20, 32, 39, 56 `47 : 8, 22, 35, 46, 50 `48 : 8, 24, 25, 41, 54

`49 : 9, 13, 33, 39, 60 `50 : 9, 16, 31, 43, 50 `51 : 9, 19, 25, 45, 59

`52 : 9, 20, 29, 38, 53 `53 : 9, 22, 34, 47, 51 `54 : 9, 24, 28, 44, 55

`55 : 10, 14, 34, 40, 60 `56 : 10, 15, 32, 44, 50 `57 : 10, 19, 30, 37, 53

`58 : 10, 20, 26, 46, 59 `59 : 10, 21, 33, 48, 51 `60 : 10, 23, 27, 43, 55

`61 : 11, 14, 29, 43, 49 `62 : 11, 15, 35, 39, 59 `63 : 11, 17, 27, 45, 60

`64 : 11, 18, 31, 38, 54 `65 : 11, 22, 26, 44, 56 `66 : 11, 24, 36, 47, 52

`67 : 12, 13, 30, 44, 49 `68 : 12, 16, 36, 40, 59 `69 : 12, 17, 32, 37, 54

`70 : 12, 18, 28, 46, 60 `71 : 12, 21, 25, 43, 56 `72 : 12, 23, 35, 48, 52

Sets of disjoint lines whose unions contain every point

of the H4 configuration

Table 5.4: Sets of disjoint lines whose unions contain every point

of the H4 configuration

1, 7, 17, 24, 25, 32, 37, 44, 51, 60, 65, 70 1, 7, 18, 23, 28, 35, 42, 45, 50, 55, 62, 67

1, 8, 17, 23, 25, 33, 40, 44, 54, 55, 62, 71 1, 8, 17, 24, 25, 32, 37, 44, 54, 58, 63, 71

1, 8, 18, 23, 29, 33, 40, 48, 50, 55, 62, 67 1, 8, 18, 24, 29, 32, 37, 48, 50, 58, 63, 67

1, 9, 17, 19, 28, 32, 39, 44, 54, 58, 63, 72 1, 9, 18, 20, 29, 33, 40, 47, 51, 55, 64, 67

1, 10, 17, 20, 25, 34, 37, 45, 53, 58, 63, 71 1, 10, 18, 19, 30, 33, 40, 48, 50, 57, 62, 70

1, 11, 13, 23, 29, 34, 40, 48, 50, 55, 65, 72 1, 11, 14, 24, 25, 32, 42, 47, 54, 57, 63, 71

1, 12, 13, 24, 30, 35, 37, 44, 54, 58, 64, 71 1, 12, 14, 23, 29, 33, 39, 48, 53, 60, 62, 67

2, 7, 17, 23, 28, 31, 38, 45, 49, 60, 65, 68 2, 7, 17, 24, 26, 31, 38, 43, 51, 60, 65, 70

2, 7, 18, 23, 28, 35, 42, 45, 49, 56, 61, 68 2, 7, 18, 24, 26, 35, 42, 43, 51, 56, 61, 70
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2, 8, 17, 24, 26, 31, 38, 43, 54, 58, 63, 71 2, 8, 18, 23, 29, 33, 40, 48, 49, 56, 61, 68

2, 9, 17, 20, 27, 31, 40, 43, 51, 59, 65, 70 2, 9, 18, 19, 28, 36, 42, 45, 52, 56, 63, 68

2, 10, 17, 19, 26, 33, 38, 46, 51, 60, 66, 70 2, 10, 18, 20, 28, 35, 41, 45, 49, 58, 61, 69

2, 11, 13, 24, 26, 31, 41, 48, 52, 60, 65, 70 2, 11, 14, 23, 27, 35, 42, 45, 49, 56, 66, 71

2, 12, 13, 23, 28, 35, 42, 46, 54, 59, 61, 68 2, 12, 14, 24, 29, 36, 38, 43, 51, 60, 65, 69

3, 7, 17, 21, 26, 31, 39, 43, 53, 60, 62, 70 3, 7, 18, 22, 28, 32, 42, 47, 49, 57, 61, 68

3, 8, 17, 22, 27, 32, 37, 44, 49, 58, 66, 71 3, 8, 18, 21, 29, 36, 40, 43, 50, 55, 62, 69

3, 11, 13, 22, 26, 34, 42, 47, 52, 55, 66, 71 3, 11, 14, 21, 29, 32, 39, 47, 49, 60, 66, 69

3, 11, 14, 22, 27, 32, 42, 47, 49, 57, 66, 71 3, 11, 15, 19, 27, 32, 42, 46, 50, 57, 66, 70

3, 11, 16, 20, 27, 31, 40, 47, 49, 57, 64, 71 3, 12, 13, 21, 29, 36, 37, 46, 53, 60, 64, 68

3, 12, 14, 21, 29, 36, 39, 43, 53, 60, 62, 69 3, 12, 14, 22, 27, 36, 42, 43, 53, 57, 62, 71

3, 12, 15, 20, 29, 34, 39, 43, 53, 58, 61, 69 3, 12, 16, 19, 28, 36, 39, 44, 52, 60, 62, 69

4, 7, 17, 22, 26, 34, 38, 43, 51, 55, 65, 72 4, 7, 18, 21, 30, 35, 37, 45, 49, 56, 64, 68

4, 8, 17, 21, 25, 32, 37, 46, 54, 59, 63, 68 4, 8, 18, 22, 26, 33, 41, 48, 52, 55, 62, 67

4, 11, 13, 21, 26, 35, 41, 46, 54, 55, 64, 72 4, 11, 13, 22, 26, 34, 41, 48, 52, 55, 65, 72

4, 11, 14, 22, 27, 32, 41, 48, 49, 57, 65, 72 4, 11, 15, 20, 25, 34, 41, 45, 52, 55, 65, 69

4, 11, 16, 19, 26, 34, 39, 48, 52, 56, 63, 72 4, 12, 13, 21, 30, 35, 37, 46, 54, 59, 64, 68

4, 12, 13, 22, 30, 34, 37, 48, 52, 59, 65, 68 4, 12, 14, 21, 30, 35, 39, 43, 54, 59, 62, 69

4, 12, 15, 19, 30, 33, 38, 46, 54, 57, 64, 68 4, 12, 16, 20, 27, 35, 37, 46, 51, 59, 64, 67

5, 7, 15, 23, 25, 34, 42, 45, 53, 56, 61, 68 5, 7, 16, 24, 26, 31, 38, 47, 51, 60, 64, 67

5, 8, 15, 24, 25, 32, 41, 44, 54, 58, 61, 69 5, 8, 16, 23, 27, 31, 40, 48, 50, 59, 62, 67

5, 9, 13, 21, 30, 31, 40, 47, 54, 59, 64, 68 5, 9, 14, 22, 27, 32, 42, 47, 51, 59, 66, 67

5, 9, 15, 20, 27, 31, 41, 45, 53, 58, 64, 67 5, 9, 16, 19, 27, 36, 40, 44, 51, 56, 64, 72

5, 9, 16, 20, 27, 31, 40, 47, 51, 59, 64, 67 5, 10, 13, 22, 26, 34, 41, 48, 53, 58, 61, 72

5, 10, 14, 21, 25, 36, 41, 45, 53, 60, 62, 69 5, 10, 15, 19, 30, 34, 38, 45, 50, 58, 66, 69

5, 10, 15, 20, 25, 34, 41, 45, 53, 58, 61, 69 5, 10, 16, 20, 25, 34, 40, 47, 51, 59, 61, 69

6, 7, 15, 24, 30, 31, 38, 43, 50, 57, 65, 70 6, 7, 16, 23, 28, 35, 39, 44, 49, 56, 61, 72

6, 8, 15, 23, 29, 33, 38, 46, 50, 55, 66, 67 6, 8, 16, 24, 25, 36, 37, 44, 52, 56, 63, 71

6, 9, 13, 22, 28, 36, 41, 44, 52, 55, 65, 72 6, 9, 14, 21, 29, 36, 39, 43, 53, 56, 63, 72

6, 9, 15, 19, 30, 33, 39, 44, 52, 56, 66, 70 6, 9, 16, 19, 28, 36, 39, 44, 52, 56, 63, 72

6, 9, 16, 20, 28, 31, 39, 47, 52, 59, 63, 67 6, 10, 13, 21, 30, 35, 37, 46, 50, 59, 66, 70

6, 10, 14, 22, 30, 33, 38, 47, 49, 57, 66, 71 6, 10, 15, 19, 30, 33, 38, 46, 50, 57, 66, 70

6, 10, 15, 20, 25, 33, 41, 46, 53, 57, 61, 70 6, 10, 16, 19, 28, 36, 38, 46, 50, 57, 63, 72
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