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Abstract
This doctoral dissertation focuses on a detailed study of the kink solutions of the modified sine-
Gordon model. This involves a complex study of the effects of breaking translational invariance
due to the presence of localized inhomogeneities and thermal noise. Generalizations to more
spatial dimensions are also considered.
The research begins with a modification of the sine-Gordon model with a position-dependent

dispersion term, which is essential for understanding the dynamics of the invariant phase differ-
ence of the macroscopic wave functions that describe superconducting electrodes in Josephson
junctions. These modifications of the sine-Gordon equation make it applicable to junctions with
different curvatures. This study further compares simplified descriptions of the kink motion in
the junction with an exact field model, highlighting the limitations of traditional collective
coordinate approaches and proposing another, in some situations preferable, alternative.
In the next part, the effect of thermal noise on kink propagation in heterogeneous sys-

tems, especially in curved long Josephson junctions, is also investigated. An analytical formula,
based on the Fokker-Planck equation, was developed to estimate the probability of kink trans-
mission through potential barriers as a function of the system temperature. The analytical
approximation in this case turns out to be consistent with numerical simulations, especially at
temperatures above 1K.
In addition, the interaction of sine-Gordon kink with localized inhomogeneities was carefully

analyzed. The study focuses on how the potential energy barrier implied by the inhomogeneity
affects the motion and stability of the kink, especially at velocities close to critical. Effective low-
dimensional models are used to simulate kink dynamics, providing an insight into the behavior
of the system in both dissipative and non-dissipative environments. These models accurately
reproduce the results of the original field model.
This research culminates in an investigation of the effect of inhomogeneities on the motions

of the kink front in 2+1 dimensions. An effective equation has been developed to represent
the motion of the kink in various scenarios, including quasi-one-dimensional and purely two-
dimensional inhomogeneities. This represents a significant advance in our understanding of the
spectral characteristics of kink and dynamic interactions with inhomogeneities. Analytical pre-
dictions and computational results in these scenarios consistently agree, confirming the validity
of the proposed models.
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Abstrakt
Niniejsza rozprawa doktorska koncentruje się w szczególności na badaniu rozwiązań kinkowych
w zmodyfikowanym modelu sinus-Gordona. Obejmuje ona kompleksową analizę efektów łama-
nia niezmienniczości translacyjnej ze względu na obecność zlokalizowanych niejednorodności.
W analizie tej uwzględniano także obecność szumu termicznego. Rozważania zostały również
uogólnione na większą liczbę wymiarów przestrzennych.
Badania te rozpoczynają się od uzyskania zmodyfikowanego modelu sinus-Gordona z za-

leżnym od położenia członem dyspersyjnym, którego obecność jest niezbędna do zrozumienia
dynamiki niezmienniczej różnicy faz makroskopowych funkcji falowych opisujących elektrody
nadprzewodzące z złączach Josephsona. Te modyfikacje równania sinus-Gordona sprawiają, że
ma ono zastosowanie do złącz o różnych krzywiznach. Praca ta porównuje uproszczone opisy
ruchu kinku w złączu z dokładnym modelem polowym, zwracając uwagę na ograniczenia trady-
cyjnych podejść opartych o współrzędne kolektywne, a zarazem proponując inną, wykazującą
lepsze przybliżenia w niektórych sytuacjach, alternatywę.
W następnej części zbadano wpływ szumu termicznego na propagację kinku w układach

niejednorodnych, w szczególności w zakrzywionych, długich złączach Josephsona. Opracowano
wzór analityczny, oparty na równaniu Fokkera-Plancka, w celu oszacowania prawdopodobieństwa
transmisji kinku przez barierę potencjału w funkcji temperatury układu. Przybliżenie anality-
czne w tym przypadku okazuje się być zgodne z symulacjami numerycznymi, szczególnie dla
temperatur powyżej 1K.
Ponadto dokładnie przeanalizowano interakcję kinku ze zlokalizowanymi niejednorodności-

ami. Badania te koncentrują się na wpływie bariery potencjału, wynikającej z niejednorodności,
na ruch i stabilność kinku szczególnie dla prędkości bliskich wartościom krytycznym. Efektywne
modele niskowymiarowe są wykorzystywane do symulacji dynamiki kinku, zapewniając wgląd w
zachowanie systemu zarówno w środowiskach dyssypatywnych, jak i nierozpraszających. Modele
te dokładnie odtwarzają wyniki oryginalnego modelu polowego.
Zwieńczeniem prowadzonych badań było zbadanie wpływu niejednorodności na ruch frontu

kinkowego w 2+1 wymiarach. Opracowano efektywne równanie reprezentujące ruch frontu
kinkowego w różnych scenariuszach, w tym z quasi-jednowymiarowymi i czysto dwuwymi-
arowymi niejednorodnościami. Stanowi to znaczący postęp w naszym zrozumieniu charak-
terystyki widmowej kinku i dynamicznych interakcji z niejednorodnościami. Przewidywania
analityczne i wyniki obliczeń numerycznych w tych scenariuszach zgadzają się, potwierdzając
słuszność zaproponowanych modeli.
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1 Introduction

This dissertation comprises a series of four articles focusing on the study of kink dynamics in
the sine-Gordon model with particular emphasis on the applicability of the obtained results
within the Josephson junction description framework. The articles are placed at the end of this
dissertation and are preceded by an extended self-reference presenting the conducted research
and introducing the most important topics.
The first section discusses the history of solitons and the Korteweg-de Vries equation used

to describe them, in order to show their connection with the sine-Gordon equation and sub-
sequently introduce the most important information related to it. The next section presents
the history of the discovery of the Jospehson phenomenon and provides a deep dove into the
method of description leading to the sine-Gordon equation. This study concludes with a broad
overview of the possible applications and current use of the presented junctions, with special
emphasis on the possible application of the results obtained in this thesis. The third section
presents the main conclusions and methods used in the articles placed at the end. This section
also includes a detailed summary of the work performed by the author within the framework of
each article. The last section summarizes and draws conclusions from the conducted research,
also indicating possible further avenues for developing this study.

1.1 Solitons

Understanding nonlinear phenomena is essential to unraveling the complexity of the natural
world. While many physical systems exhibit linearity within narrow limits, their nonlinear
behavior outside these constraints often holds the key to a deeper understanding of their internal
dynamics. To get a holistic picture of such systems, their nonlinear characteristics must be
meticulously considered. This is particularly important in the field of modern physics, where
the study of nonlinear dynamics has revealed intriguing structures such as solitons.
In 1834, while working on improving barges on the Union Canal at Hermiston near Edin-

burgh, Scottish engineer John Scott Russell witnessed an unexpected phenomenon. When the
rope towing one of the barges suddenly snapped, Russell observed the formation of a stable,
solitary wave, which he called wave of translation. He described the discovery in these words:

I believe I shall best introduce the phenomenon by describing the circumstances of
my own first acquaintance with it. I was observing the motion of a boat which was
rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly
stopped – not so the mass of water in the channel which it had put in motion;
it accumulated round the prow of the vessel in a state of violent agitation, then
suddenly leaving it behind, rolled forward with great velocity, assuming the form
of a large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and overtook it still rolling on at a
rate of some eight or nine miles an hour, preserving its original figure some thirty
feet long and a foot to a foot and a half in height. Its height gradually diminished,
and after a chase of one or two miles I lost it in the windings of the channel. Such,
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in the month of August 1834, was my first chance interview with that singular and
beautiful phenomenon which I have called the Wave of Translation. [1]

In an attempt to better understand the phenomenon he observed, Russel prepared and con-
ducted a series of laboratory experiments that allowed him to reproduce the conditions and
effects of the original observation. The experiment he prepared consisted of dropping a weight
at one end of a long water channel. The empirical deductions he made allowed him to observe
that the volume of water thus displaced was the same as the volume of water forming the wave.
He further demonstrated that the speed u of such a solitary wave can be described by the
following relation

u2 = g(h+ a), (1)

where g is the acceleration of gravity, h describes the depth of undisturbed water, while a
describes the amplitude of the wave. Which made it possible to conclude that this solitary
wave is a gravitational wave.

1.2 Korteweg–de Vries equation

The model proposed by Russell attracted independent interest from Joseph Boussinesq in 1871
and John William Strutt, Lord Rayleigh in 1876. With the assumption that an observed solitary
wave has a length scale that is much greater than the depth of the water of the channel in which
it moves, they derived Russell’s formula for the velocity u from the equations of motion for an
inviscid incompressible fluid [2–6].They also developed a formula for describing the wave profile,
which takes the following form

ζ(x, t) = a sech2(β(x− ut)), (2)

where β−2 = 4h2(h+a)
3a for any a > 0. However, it is worth mentioning here that the eq. (2)

presented above is strictly satisfied only under the assumption of a
h
≪ 1. However, the previously

mentioned studies did not include a simple equation for which the wave profile presented in
eq. (2) would be a solution. This last step was accomplished by Diederik Korteweg and Gustav
de Vries in their 1895 paper [7]. They showed that if we assume that the given values of ε and
σ are sufficiently small, then the equation is of the form

∂ζ

∂t
=
3
2

√
g

h

(
2
3
ε
∂ζ

∂χ
+ ζ

∂ζ

∂χ
+
1
3
σ
∂3ζ

∂χ3

)
, (3)

where the variable χ represents a coordinate that moves alongside a solitary wave. This equation
can be easily represented in the form of the well-known KdV equation, i.e.

ζt =
3
2

√
g

h

(
ζζX +

1
3
σζX,X,X

)
, (4)

where this time ζ = ζ(X, t) is treated as a function of time and new space variable

X = χ+ ε
√
g

h
t.
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In the above equations, the σ parameter contains the γ surface tension according to the relation
σ = 13h

3 − γh
gρ
with ρ describing the density of the liquid. Parameter ε is chosen arbitrarily.

Due to the complex nonlinear nature of this equation, further study had to wait for the
development of computational capabilities offered by computers. However, before we get to
that, it is worth returning for a moment to the original observation made by Roussell. He
presents two intriguing descriptions, the explanation of which is only possible in retrospect.
First, he presents a wave that has some arbitrary initial profile distinct from a solitary wave,
which then evolves into two or more waves, each of which gradually approaches the form of
a single solitary wave. The second surprising observation is the situation in which the initial
state consists of two waves, the second of which is higher than the first. In such a case, we can
see that the higher wave catches up with the shorter one, then overtakes it and continues on
its path unchanged and intact. This situation occurs even though the waves do not satisfy the
principle of linear superposition. This observation provides a solid basis for assuming that we
are dealing with a special type of nonlinear process.
One of the first direct pieces of evidence demonstrating the surprising properties of solitons

was the results of research conducted on the MANIAC I computer at Los Alamos National
Laboratory. This research was carried out by Enrico Fermi, John Pasta, Stanisław Ulam, and
Mary Tsingou and published in 1955 [8]. It focused on a numerical simulation of phonons within
a nonlinear lattice framework, which was later found to have a strong connection to the discrete
form of the Korteweg-de Vries equation. They noted that the energy was not evenly distributed
across the different modes. Considering these insights, Norman Zabusky and Martin David
Kruskal in 1965 [9] analyzed the initial value problem associated with the equation

φt + φφx + δ2φx,x,x = 0. (5)

Assuming as an initial condition a function of the form

φ(x, 0) = cos πx, 0 ¬ x ¬ 2,

and assuming that the function and the derivatives (φ, φx, φx,x) are periodic on a given range
[0, 2] for all values of t. They chose as the value of the dissipation δ = 0.022. After a short period
of time, they observed that a kind of local equilibrium between the nonlinearity and the action
of the dispersion member is produced in the system. This reveals that consistent with Roussell’s
initial findings, larger waves are formed that overtake the smaller waves. This results in the
remarkable realization that nonlinear waves can have intense interactions with one another, yet
afterwards revert to a condition as though these interactions had never occurred.
The enduring nature of the wave prompted Zabusky and Kruskal to introduce the term

soliton (akin to photon, proton, and similar terms) to highlight the particle-like qualities of
these waves that appear to preserve their individuality after a collision. The properties of lone
waves can be summarized following P. G. Drazin and R. S. Johnson [10] as follows

(i) represents a wave packet that maintains a consistent speed and shape,
(ii) is localized,
(iii) retains its original form after freely interacting with other solitons, except for a potential
phase shift.
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These discoveries and the amazing properties of solitons gave rise to intensive research on
nonlinear equations such as just Korteweg-de Vries, the Nonlinear Schrödinger equation or the
sine-Gordon equation, which is the subject of this paper. However, before going into a detailed
description, it is worth mentioning in a few more words the use of solitons in modern physics.
In recent years, the concept of soliton has found applications not only in physics and math-

ematics but also in chemistry, biology, and medicine. The field in which most experiments and
theoretical calculations on solitons have been conducted is definitely optical fibers. In this case,
solitons are described using the Manakov system, which consists of Maxwell’s equations trans-
formed into cylindrical coordinates. In this description, it is necessary to consider the boundary
conditions for the optical fiber and the phenomenon of birefringence. The first observation of
soliton propagation was made by P. Emplit and his team in 1987 [11]. Today, solitons are used
for high-speed data transmission over long distances using optical fibers.
In materials physics, solitons appear in ferroelectric materials as domain walls, which are ar-

eas of lattice dislocation that separate areas of opposite polarity [12]. These walls can move and
retain their form, facilitating the switching of polarization states in the domain under certain
conditions, such as electrical or mechanical stresses [13]. Similarly, different types of solitons oc-
cur in magnets as solutions to nonlinear differential equations such as the nonlinear Schrödinger
equation, the Ishimori equation or the Landau-Lifshitz equation [14]. In addition, in the field
of atomic physics, the concept of soliton is applicable, in particular atomic Bose-Einstain con-
densate exhibit soliton behavior [15]. Another interesting example of the occurrence of solitons
are biological structures such as proteins and DNA [16]. Here, solitons are associated with the
collective movement of these molecules at a low frequency. In addition, neuronal communication
can occur through density wave-like signals carried by solitons [17]. More detailed examples of
the use of solitons, particularly in the context of the sine-Gordon model, will be presented later
in this study.

1.3 Sine-Gordon equation

Although, as will be shown later, the sine-Gordon equation first appeared in 1862, it is worth
starting its history with its rediscovery in 1939. At that time, Yakov Frenkel together with
Tatiana Kontorova presented the results of their study of slip propagation in an infinite chain
of elastically bonded atoms. This chain lay on top of a stationary chain made of analogous
atoms. The effect they observed can be approximated by a partial differential equation of the
form

∂2φ

∂x2
− ∂2φ

∂t2
= sinφ. (6)

The initial term refers to the elastic interaction energy between neighboring atoms, the next
term corresponds to their kinetic energy, and the last term refers to the potential energy result-
ing from the fixed lower chain. It is worth mentioning at this point a few words about the name
of this equation. Its form resembles in structure the linear relativistic Klein-Gordon equation

∂2ψ

∂x2
− 1
c2
∂2ψ

∂t2
= µ2φ.

It was this similarity that led to the use of the name nonlinear Klein-Gordon equation, and
eventually the sine-Gordon equation, even though neither Osker Klein nor Walter Gordon had
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anything to do with its discovery.
Of the possible solutions to the sine-Gordon equation, the most interesting are the solitary

waves of the form
φ(ξ) = φ(x− ut). (7)

As can be noted, such solutions are only functions of one independent variable, where u is the
velocity of wave propagation [18]. Hence, eq. (6) can be reduced to an ordinary differential
equation of the form

(1− u2)d
2φ

dξ2
= sinφ. (8)

Integration of the above equation leads to

1
2
(1− u2)dφ

dξ
= − cosφ+ C. (9)

where C is an arbitrary constant of integration. Since we are only looking for stable solutions
therefore we can assume additional conditions in the form of u < 1 and C = 1 [19], and rewrite
the eq. (9) in the following form

dφ

sin φ2
= ± 2√

1− u2
dξ. (10)

Using the form so obtained, one can perform the integration leading to the solution

φ(ξ) = 4 arctan
(
e
± ξ−ξ0√

1−u2

)
, (11)

and finally after changing the variables

φ(x, t) = 4 arctan
(
e
±x−x0−ut√

1−u2

)
, (12)

The obtained solution represents a solitary wave moving at a given velocity |u| < 1. The ± sign
defines the polarity of the kink, the solution with the + sign is called kink while the one with
the − sign is called antikink, both of the solutions are shown in fig. 1.

1.3.1 Kink-antikink scattering solution

The other solution of eq. (6), as demonstrated by G. L. Lamb [20], takes the form of

φ = 4arctan
(
X(x)
T (t)

)
. (13)

By inserting this solution into the sine-Gordon equation, it can be shown that functions X and
T have to fulfill the conditions

(X ′)2 = kX4 +mX2 + n,

(T ′)2 = −kT 4 + (m− 1)T 2 − n,
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Figure 1: Solution kink (red) and anti-kink (blue), in both cases x0 = 0 and u = 0.

where n, m, and k are arbitrary constants.
An interesting example of using a solution defined in this way would be one in which we

assume that k = 0 and n = m. In such a case, the values of X and T can be represented as
follows

X = sinh
√
mx,

T =
m

m− 1
cosh

√
(m− 1)t.

Thus, the solution in this case will be of the form

φ = 4arctan

u sinh
(

x√
1−u2

)
cosh

(
ut√
1−u2

)
 (14)

where u =
√
1− 1

m
. This solution was originally presented in the work of J. K. Perring and T.

H. R. Skyrme, which focused on describing the collision between two kinks [21].

1.3.2 The Bäcklund transformation

A Bäcklund transformation is a transformation that enables a given equation to be transformed
into the same or another linear or nonlinear equation. With the existence of such a transforma-
tion emerges the possibility of mapping the solutions of one equation to the solutions of another.
In particular, the transformation allows for a non-identical transformation of the equation into
itself. In this case, it is said to be the auto-Bäcklund transformation. In this regard, one obtain
the ability to transform some solutions of a given equation into other solutions of the same
equation. First the sine-Gordon equation have to be transformed to the light-cone coordinates

x→ ζ =
1
2
(x+ t),

t→ ξ =
1
2
(x− t),

φ(x, t)→ σ0(ζ, ξ),

(15)
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which leads to the equation
∂2σ0
∂ζ∂ξ

= sinσ0. (16)

The equation was initially implemented by Edmond Bour in 1862 while studying surfaces with
constant negative curvature [22]. For the sine-Gordon equation, the Bäcklund transformation
is of the form [23]

∂

∂ζ

(
σ1 − σ0
2

)
= a sin

(
σ1 + σ0
2

)
,

∂

∂ξ

(
σ1 + σ0
2

)
=
1
a
sin

(
σ1 − σ0
2

)
.

(17)

After the transformation one get again sine-Gordon equation

∂2σ1
∂ζ∂ξ

= sinσ1. (18)

By using the basic idea of the Bäcklund transformation, that allows one to transform current
solution into a new one. Knowing the solution σ0, one can obtain a new solution σ1 satisfying
eq. (17). Considering a trivial solution σ0 = 0, one obtains

σ1 = 4arctan
(
eaζ+

ξ
a

)
. (19)

In addition, if one introduce a new parameter u

u =
1− a2

1 + a2
,

and use the transformation eq. (15), we get a kink solution in well known form eq. (12). As
can be seen, by application Bäcklund transforamation it becomes possible to obtain an infinite
number of new soliton solutions starting from zero-soliton state in the form of σ0 = 0.

1.3.3 Inverse scattering transform

Although the method presented above based on the Bäcklund transform allows to obtain an
infinite number of solutions using previous ones, there is a more general method that, at least
formally, solves the sine-Gordon equation for arbitrary (with certain limitations) initial con-
ditions, which is the inverse scattering transform. This technique is a nonlinear version and
extension of the Fourier transform, and is used to solve many nonlinear partial differential
equations. In very general terms, it involves reconstructing a potential from the scattering
data. The method was first presented by C. Gardner, J. Greene, M. Kruskal, and R. Miura in
two papers on solving the Korteweg-deVries equation [24, 25].
To introduce this method’s operation in the context of the sine-Gordon equation, it is

worth first looking at the well-known Schrödinger equation. In this equation, thanks to the
known potential, it is possible to determine the so-called scattering data, which are the energy
levels along with the number of localized states and the set of all reflection and transmission
coefficients. The inverse scattering method uses the same idea but performs it in the opposite
direction, thus recovering the potential information of the Schrödinger equation in a situation
where the scattering data are known. Of course, the sine-Gordon equation is different from the
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Schrödinger equation, but the problem can be solved by relating to it a set of two linear partial
differential equations that will have the same potential in the solution.
Using this reasoning in practice, the first step is to associate a system of linear equations

with the sine-Gordon equation. This system has an unambiguously given initial condition and
the corresponding boundary conditions; therefore, using the direct scattering method, one can
easily find the scattering data, which will also be a reflection of the potential at zero time. Then
write out the equations that determine the evolution of such a specified system, which results in
the knowledge of scattering data for any given time. At this point, therefore, all the information
about the evolution of the associated linear problem is given, and it becomes possible to use
the inverse scattering method to find the potential corresponding to this data. Because this
potential is directly related to the solution of the sine-Gordon equation, therefore the potential
at any time greater than zero defines the solution obtained for the given initial conditions.

1.4 Josephson junction

The Josephson junction has become a significant component of quantum physics and super-
conducting technology over the past decades. This breakthrough discovery was made by Brian
D. Josephson, a 22-year-old British PhD student at the time, during his work on quantum tun-
neling. The calculations were published in Physics Letters on July 1, 1962 [26]. Figure 1 shows
an illustrative diagram of Josephson’s junction. As can be seen, such a junction consists of two
superconductors separated by a thin insulator layer. The unusual operation of such a system
lies deep in the principles of quantum mechanics and focuses on the ability of the Cooper pairs
present in superconductors to tunnel the isolation barrier of the junction. Despite initial doubts
about the existence of such a phenomenon [27], it was experimentally confirmed by Philip An-
derson and John Rowell of the Bell Labs in Princeton in 1963 [28]. For his groundbreaking
work, Brian Josephson was awarded the Nobel Prize in Physics in 1973.

Figure 2: Schematic illustration of a Josephson junction consisting of two superconductors
separated by a thin insulator layer.

The sine-Gordon equation presented earlier is directly applicable to the description of the
dynamics of quasi-particle excitations in the Josephson junction. The next section present a
method for construction of a low-energy effective description of the junction, which results in
the appearance of the sine-Gordon equation in this context. The kink solution, in this system
represents the fluxon - a quasiparticle carrying a quantum of magnetic flux [29].
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1.4.1 Derivation of sine-Gordon equation in Josephson junction

As mentioned earlier, in each superconductor, electrons can move as Cooper pairs. If we define
R as their density and phi as their quantum phase, one can easily describe the collective
macroscopic wave function for all these electron pairs as follows

ψ =
√
Reiφ. (20)

Examining the quantum mechanical properties of two superconductors placed at any distance
from each other, it becomes obvious that each superconductor operates in its own unique
quantum state, characterized by a distinct wave functions ψ1 and ψ2. Moreover, the phases of
these wave functions φ1 and φ2 remain uncorrelated. However, the situation changes when the
superconductors are sufficiently close to each other. In this case, the phase mentioned earlier
becomes correlated because of the occurrence of insulator penetration by Cooper pairs. In this
case, the system can be described by two coupled linear Schrödinger equations of the following
form

ih̄
∂ψ1
∂t
= E1ψ1 + kψ2,

ih̄
∂ψ2
∂t
= E2ψ2 + kψ1.

(21)

In the above description, E1 and E2 correspond to the value of the energy of the ground
state in each of the two discussed superconductors, while the variable k is a coupling constant
determined by the characteristics of the junction. This constant tends toward zero as the width
of the insulator increases. Assuming a potential difference of V between the insulators, then
the energy difference of the ground states can be determined as follows

E1 − E2 = 2eV.

Furthermore, if we choose the value of the average energy appropriately, we can assume that
E1+E2
2 = 0 which leads us to a simple relation

E1 = +eV,

E2 = −eV,

and, as a result, to present eq. (21) in the following form

ih̄
∂ψ1
∂t
= +eV ψ1 + kψ2,

ih̄
∂ψ2
∂t
= −eV ψ2 + kψ1.

(22)

This description can now be completed by using eq. (20) written individually for each super-
conductor in the form of ψ1 =

√
R1e

iφ1 and ψ2 =
√
R2e

iφ2 . After inserting the independent
forms of the wave functions, the separation of eq. (22) into real and imaginary parts can be

9



made, obtaining the following

h̄
∂R1
∂t
= −2k

√
R1R2 sinφ,

h̄
∂R2
∂t
= +2k

√
R1R2 sinφ,

h̄
∂φ1
∂t
= k

√
R2
R1
cosφ− eV,

h̄
∂φ2
∂t
= k

√
R1
R2
cosφ+ eV,

(23)

where φ = φ2 − φ1 represents the phase difference between the two wave functions. If the
superconducting electrodes are made of the same material then the densities of Cooper pairs
are equal to each other, i.e. R1 = R2 ≡ R0, which allows to simplify the notation

2k
h̄

√
R1R2 =

2kR0
h̄
= J0.

Since the change in the density of Cooper pairs in time represents current flow so from the
second equation (23) we get

J = J0 sinφ. (24)

Subtracting the last two equations of system eq. (23) leads to the relationship

h̄
dφ

dt
= 2eV. (25)

Introducing the phase difference expressed in units of magnetic flux into the description

Φ =
Φ0
2π

φ,

equation (25) can be written in simple form

dΦ
dt
= V. (26)

In the above description Φ0 = h
2e ≈ 2, 1 · 10

−15Wb represents a quantum of magnetic flux.
Combining the properties shown in eq. (24) and eq. (26), we can write the relations for Φ as

Φ =
Φ0
2π
arcsin

J

J0
(27)

With the above equations in place, one can now follow the two significant observations made
by Josephson regarding the so-called the DC Josephson effect and the AC Josephson effect.
If one assumes that in the system under study the potential difference is equall to zero

(V = 0), then according to eq. (25) the phase is constant φ = const. Using eq. (24), it can
be seen that in this situation, despite the absence of an applied voltage, there will be a finite
current density J . The presence of current in the absence of an applied voltage in this system
is a consequence of quantum tunneling effect, and the value of the current itself is proportional
to the phase difference in the insulator (Josephson phases). This phenomenon is called the DC
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Josephson effect.
On the other hand, if the potential difference has a constant value different from zero, i.e.

V = const = V0, then by integrating eq. (26) we obtain

Φ = V0t+ ΦC ,

where ΦC represents a constant of integration. This information can now be used in eq. eq. (24),
leading to a current density in the form of

J = J0 sin
2π
Φ0
(V0t+ ΦC). (28)

For the current density thus described, we can also determine an angular frequency as follows

ωJ =
2πV0
Φ0
=
2eV0
h̄

. (29)

On the basis of eq. (28), it is easy to see that when a constant voltage is applied to the junction,
the phase will change linearly over time, while the current itself will be a sinusoidal AC current.
This phenomenon is known as the AC Josephson effect, which shows that the Josephson junction
can function as an excellent voltage-to-frequency converter.

Figure 3: Diagram showing the equivalent circuit of a long Josephson junction with the specified
dx element, which is the equivalent circuit per unit length.

The behavior of a point junction can be used to describe a long Josephson junction. As
shown in fig. 3, a long Josephson junction can be described as a collection of point junctions.
Each point junction in the figure is represented by an equivalent circuit. In particular, by
determining a portion of the equivalent circuit dx, we can consider the equivalent circuit per
unit length. Assuming that in the junction under study, the insulator layer has a thickness of
d and l stands for the width of the superconducting strip, it can be seen that capacitance per
unit length is equal to

C =
εdε0l

d
, (30)

and inductance per unit lenght can be written as

L = µ0
2λL + d

l
. (31)

In the above equations, εd denotes the dielectric constant of the junction separator, ε0 is the
vacuum permittivity, µ0 is vacuum magnetic permeability, and λL represents the London’s
penetration depth in the superconductors. Using Kirshohf’s voltage law, one can subsequently

11



obtain the following
∂V

∂x
= −L∂I

∂t
. (32)

On the other hand, using Kirshohf’s current law one gets

∂I

∂x
= −C∂V

∂t
− J0 sin 2π

Φ
Φ0
. (33)

To the above equations one should also add information about the phase change over time

∂Φ
∂t
= V. (34)

The description thus prepared can be combined to obtain a sine-Gordon equation of the fol-
lowing form

∂2φ

∂t2
− c2J

∂2φ

∂x2
+ ω2p sinφ = 0, (35)

where
cJ =

1√
LC

,

ωp =

√
2πJ0
Φ0C

.

This equation describes the dynamics of the phase difference in the long Josephson junction.
It is worth noting that the above notations allow easy introduction of an additional quantity
of the form cJ

ωp
, which has the dimension of length and is called Josephson penetration length.

Its value allows to determine whether the junction under study meets the conditions for the
description of a long junction or not.

1.4.2 Application of Josephson junction

The Josephson junctions have found numerous technical applications. First, Josephson junctions
are used in constructions of SQUIDs (Superconducting Quantum Interference Devices) which
are very sensitive magnetometers. Sensitivity of SQUIDs is sufficient to measure magnetic fields
of order 10−18 T; for comparison, the magnetic fields in animal brains are between 10−9 T and
10−6 T. This unusual precision makes SQUIDs effective and useful in biology and medicine,
especially in cardiology, magneto-gastrography, magneto-encephalography, and others. SQUIDs
have also found applications as the sensor in gyroscopes on Gravity Probe B, to observe the
dynamical Casimir effect for the first time [30], and were used in D-Wave Systems 2000Q
quantum computers. This device is also used in earthquake diagnostics, in explorations of
minerals, and in military applications [31].
In the future SQUIDs are expected to have a military application, especially in anti-

submarine warfare as a MAD (Magnetic Anomaly Detector). SQUIDs could also find appli-
cation in SPMR (Superparamagnetic relaxometry). SPMR technology uses superparamagnetic
properties of magnetite nanoparticles and SQUID sensitivity. These nanoparticles have no mag-
netic moment, however become ferromagnetic after being exposed to an external field. When
the external magnetic field is removed, they return to the paramagnetic state with some char-
acteristic time. The time depends on the binding of the nanoparticle to the surface, and on its
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size. SQUIDs are used to detect and localize the nanoparticles by field decaying measurement.
It could find possible applications in cancer detection [32].
The second application of the Josephson junction is SET (Single Electron Transistor). This

device is a type of a very sensitive switch that uses only single electrons to change the state of the
circuit from “on” to “off” position and vice versa by the uses of controlled electron tunnelling
to change the value of current. It is made of two junctions that share a low capacitance common
electrode named “island” and is capacitive connected to the gate which is the third electrode.
Because of the connection, the island’s electrical potential may be adjusted. In the “off” state
there are no accessible energy levels on the electrode because all energy levels on the island
electrode with lower energies are occupied. Therefore, electrons cannot tunnel onto the island
electrode. However, when a positive voltage is provided to the gate (the “on” state), the levels
of the island are decreased and electrons can tunnel onto it [33].
Because of low power consumption and high operating speed SET could be the key for future

nanotechnology devices. SET could also find applications in random access memory and digital
data storage technologies. Same of the possible applications are programmable single-electron
transistor logic, charge state logic, single-electron spectroscopy, detection of infrared radiation,
and super-sensitive electrometers. SET could also be used in standards of temperature and DC
current [34].
It seems that in the near future the Josephson junction will find possible applications in

digital electronics technology. One of the possible applications is RSFQ electronics (Rapid Single
Flux Quantum) relies on quantum effects in Josephson junctions to process digital signals. In
this device magnetic flux quanta with digital information are carried by picosecond duration
voltage pulses that travel along the superconducting transmission lines. The pulses can be as
narrow as 1 picosecond with an amplitude of about 2 mV. It makes this technology useful
especially for computer applications. Operating frequency of RSFQ logic could be extremely
fast up to hundreds of gigahertz with about 100,000 times lower power consumption than CMOS
semiconductor circuits [35]. RSFQ found applications in ultrafast digital signal processing, high
performance cryogenic computers and control circuitry for superconducting qubits [36]. Future
computers made in this technology could be much faster than the traditional ones and with
lower power consumption.
Last but not least example where the Josephson junction could find a possible application is

quantum computing [37, 38]. This kind of computers can solve problems by applying different
aspects of quantum mechanical states [39]. A quantum computer uses qubits instead of bits
in a classical one. A classical bit is represented by one of the logical values 0 or 1. However,
in the case of qubits, they are two-dimensional quantum systems. Their Hilbert spaces are
spanned by two vectors |0⟩ and |1⟩. This is why, unlike bits, the quantum state of a qubit
is a superposition of these states. Increasing the number of qubits also leads to an increase
in the number of possible superposition states. Generally, n qubits correspond to 2n different
states of superposition. Comparing it to a classical computer, performing one manipulation on
a quantum computer corresponds to doing 2n operations at the same time in a classical case.
This equipment works by manipulating qubits with the predetermined sequence of quantum
logic gates. The product of these unitary operators forms the quantum algorithm. On the basis
of the Josephson junction, such qubits are proposed in three different types.
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1. First is a charge qubit (otherwise known as Cooper-pair box) proposed in 1997 [40]. The
charge qubit is made of a small superconducting island connected to a superconducting
reservoir through a superconducting tunnel junction (Josephson junction). If Cooper pairs
are present in the island it corresponds to the state |1⟩ and the absence corresponds to
the state |0⟩. The quantum superposition of those charge states is determined by the gate
voltage [37, 41, 42]. In a charge qubit the relaxation time T2 is on the order of 1 − 2µs
[43].

2. Second is a flux qubit (otherwise known as a persistent current qubits) proposed in 1999 in
MIT [44]. It is a short loop superconducting metal, which is interrupted by the Josephson
junctions. When the external flux is applied a persistent current flows continually. Here,
the basis states are circulating currents that can flow in either a clockwise or counter
clockwise orientation. To be able to uses it as a qubit a half flux quanta must be applied
to the loop to bring the two levels together. For this purpose, the microwave frequency
radiation could be used [45].

3. Third is a phase qubit. It is based on SIS Josephson junction and uses energy levels of
the “phase particle.” At low temperatures (much less than 1K) quantum energy levels
exist in the local minima. The ground state becomes the “0” state and the first excited
state the “1” state of the qubit. The difference between the “0” and the “1” state could
be changed by the external bias current [46].

For all of the above-mentioned cases, the key to obtaining junctions with the desired prop-
erties is to design them appropriately based on achievable parameters. One of the possibilities
to obtain the desired parameters is the engineering of the junction geometry. In the literature
one can find many examples of junction shaping in order to obtain unique properties, e.g. a
junction with an exponentially tapered width [47]; the heart-shaped annular junction [48, 49];
two perpendicular Josephson T-Lines forming a T junction [50]; a similar Y junction [51, 52];
an annular junction delimited by two closely spaced confocal ellipses [53, 54]; and finely change
of the curvature of the junction [55–60]. The application of each of these methods allows the
junctions with specified and required properties to be obtained.
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2 Method and Results

2.1 Modeling kink dynamics in the sine–Gordon model with posi-
tion dependent dispersive term

The first of the articles included in this dissertation is a paper entitled Modeling kink dynamics
in the sine-Gordon model with position dependent dispersive term, which was published in 2021
[59]. This study focuses on the modified sine-Gordon equation, which includes a function that
explicitly breaks the translational invariance of the original equation. The considered equation
has the following form

∂2t φ− ∂x(F(x)∂xφ) + sinφ = 0, (36)

where function F is given as

F = 1 + εg(x), g(x) = θ(x)− θ(x− L). (37)

The physical motivation for this research is based on the occurrence of the dispersion term
presented in the above equation in Josephson junctions. The second section of this article
presents the derivation of the discussed equation in the case where the given function F can
be identified with the curvature of the Josephson junction. Starting with a given supercurrent
density in the presence of a magnetic field in the junction in the form

j⃗ =
e∗

m∗

[1
2
ı h̄ (ψ∇ψ∗ − ψ∗∇ψ)− e∗

c
A⃗ ψψ∗

]
. (38)

Here, e∗ and m∗ stand for the charge and mass of Cooper pairs, while ψ = |ψ|eiϕ is the many-
particle wave function describing the superconducting electrode. From the above relationship,
the phase of the wave function can be determined as a function of the current and the fields
present in the system

∇ϕ = 2e
h̄c

[
mc

2|ψ|2e2
j⃗ + A⃗

]
. (39)

This time e and m denotes the charge and mass of the electron. In curvilinear coordinates based
on the junction surface (described in Appendix A of the paper), the useful component of the
gradient takes the form of

1
G
∂sϕ = (gradϕ)s =

2e
h̄c

[
mc

2|ψ|2e2
js
SH + As

]
=
2e
h̄c
As. (40)

The G function is directly related to the curvature of the junction. Then by selecting the
integration contour accordingly and using Stokes’ theorem, one can relate the phase difference
of the wave functions of the superconducting electrodes φ to the proper component of the
magnetic field Hρ

1
G
∂sφ =

1
G

(
φ(s+ ds)− φ(s)

ds

)
=
2e
h̄c
dmHρ. (41)
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The constant dm describes how deeply the magnetic field penetrates the central region of the
junction. On the other hand, the Ampere’s circular law with the Maxwell correction leads to

1
G
∂sHρ =

4π
c
ju +

ε

ac
∂t(∆V ). (42)

In the above formula, ∆V is the potential difference between the lower and upper surfaces of the
dielectric layer. Adding the second Josephson’s law to these relationships and then averaging
the resulting formula with respect to the normal variable and using the notations c̄ =

√
a
εdm

c

for Swihart velocity and λJ =
√

h̄c2

8πedmj0
for Josephson penetration depth, we obtain eq. (36).

The constant a in the above expressions is the thickness of the dielectric layer, while j0 is the
critical Josephson current density. An important feature of the above derivation is that it does
not impose limits on either the curvature values nor on the rate of change of curvature along the
junction. The presented derivation of the eq. (36) also shows, the practical area of applicability
of the studied modification of the sine-Gordon equation.
The next section describes the possible dynamics of the kink in the studied system. These

results are based on the numerical solution of the full field model for different initial conditions
and for different values of the parameter ε, which determines the junction curvature. Numer-
ical calculations were performed using Mathematica software based on the Adams method.
This method is an example of a linear multistep method that, unlike single-step methods, uses
information obtained from previous steps. This method uses extrapolative interpolation poly-
nomials built from a certain number of previous derivative values of the analyzed function. In
the studied system, there are two possible situations depending on the initial velocity of the
kink. In the first case, if the kink velocity is too low, it will reflect from the inhomogeneity and
start moving toward the initial position. On the other hand, if the initial speed is sufficiently
high, it will pass through the inhomogeneity and continue to move through the system. The
limiting velocity is called the critical (threshold) velocity.
The results obtained from the solution of the full field model are compared in the next

section with the results obtained from the study of approximate methods. The first one was
a comparison of the kink solution energy in homogeneous and inhomogeneous systems. This
comparison is based on the assumption that in the initial state, the kink rests at such a large
distance from the inhomogeneity that it can be approximately treated with the description of
a homogeneous system. In contrast, at the very end of the motion, if its velocity corresponds
exactly to the value of the critical velocity, it stops at the limit of the potential barrier possessing
only a non-zero value of potential energy. This makes it straightforward to determine the kinetic
energy at the beginning in the form of

(EF)in =
8√
1− u2c

, (43)

and at the end of the motion as

(EF)fin = 8 + 4ε tanh
L

2
. (44)

By comparing these energies, it is possible to determine the value of the critical velocity, which
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is equal to

uc =

√√√√1− 1
(1 + 12ε tanh

L
2 )
2
. (45)

To compare the results obtained using this method with those obtained using other methods, a
system of ordinary differential equations describing the movement of the kink was also obtained
in the following form

du

dt
=
1
4
ε
√
1− u2

(
sech2

L− x0√
1− u2

− sech2 x0√
1− u2

)
,

dx0
dt
= u.

(46)

The results obtained are presented in Figures 6-9[59]. As can be seen, these results do not satis-
factorily reflect the solution of the partial differential equation. As postulated later in the paper,
one of the reasons for this inconsistency may be that not all kink participates in the interaction
with inhomogeneity. To verify this hypothesis, the concept of active mass was introduced to
denote the actual mass of the kink involved in the interaction. This mass was determined from
the solutions of the full model, and including it in the framework of the equations of motion
(eq. (46)) allowed excellent agreement between the results of the approximate model and the
solutions of the full field theory model.
Another approximation model considered was a perturbation scheme based on the method

proposed by D. McLaughlin and A. Scott [61]. This approach is built on the separation of the
part describing the difference between the sine-Gordon model and the considered field equation,
which can be represented as

∂2t φ− ∂2xφ+ sinφ = ε∂x(g(x)∂xφ) = εf(φ). (47)

Using the path presented by the authors of the mentioned article, it is possible to determine
the system of effective equations of motion

du

dt
=
1
4
ε
√
1− u2

(
sech2

L−X√
1− u2

− sech2 X√
1− u2

)
,

dX

dt
= u+

1
4
εu

(
tanh

X√
1− u2

+ tanh
L−X√
1− u2

+ V (X)
)
,

(48)

where
V (X) =

X√
1− u2

sech2
X√
1− u2

+
L−X√
1− u2

sech2
L−X√
1− u2

. (49)

The obtained result allow comparison with both solutions of the full field model and solutions
from other approximate models. However, it is worth noting here that the results obtained
by this method present the lowest agreement compared with those obtained from the partial
differential equation.
The third approach is based on projecting onto the zero mode of the kink solution. This

method has been previously used to study the behavior of systems described by the φ4 model
in papers [62, 63]. This approach is based on the application of the kink ansatz in the field
equation. As presented in detail in the discussed article, such a procedure leads to a system of
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equations of motion similar to those obtained by energy approximation (eq. (46)).
The last of the presented approaches is based on projection onto energy density. This method

has not been used before in the context presented here, and like the active mass concepts
introduced earlier, it allows the calculation to take into account a more concentrated distribution
near the kink core. The procedure is similar to the projecting onto zero mode method mentioned
earlier, except that the mode is replaced by the energy density

Eq = 0 =⇒ ⟨sech2ξ, Eq⟩ ≡
∫ ∞
−∞

dx sech2ξ Eq = 0. (50)

Which finally leads to the equations of motion in the following form

(
3 + u2

) du
dt
=
4
π
ε
√
1− u2

(
sech2

L− x0√
1− u2

− sech2 x0√
1− u2

)
,

dx0
dt
= u.

(51)

The results obtained by this method show, in considered range of parameters, significantly
higher agreement than the other methods discussed earlier, and are only slightly poorer than
the results that consider the fit parameter in the form of active mass. The last section of this
article provides a comprehensive summary of the results discussed, which will also be discussed
in section 3 of this thesis.

Authorship contribution: My work as a co-author of this article consisted of partially per-
forming analytical calculations, performing all numerical calculations of the solution of the full
model and approximate methods, and partially preparing the final version of the manuscript.

2.2 The impact of thermal noise on kink propagation through a
heterogeneous system

The second article was entitled The impact of thermal noise on kink propagation through a
heterogeneous system and was publisher in 2023 [64]. This research focuses on investigating the
effect of thermal noise on the motion of kink in Jospeshon junctions with a given curvature.
Within the framework of this article, a sine-Gordon model with disipation due to quasiparticle
currents and bias current was considered in the follwoing form

∂2t φ+ α∂tφ− ∂x(F(x)∂xφ) + sinφ = −Γ. (52)

Using the method presented in the previous article, the potential for the force that represents
the barrier associated with the curved part of the Josephson junction was calculated in the
form

V (x0) = ε
3
4π
[ arctan(tanh(x0 − xi

2

))
− arctan

(
tanh

(
x0 − xf
2

))
+

1
2
sech(x0 − xi) tanh(x0 − xi)−

1
2
sech(x0 − xf ) tanh(x0 − xf )].

(53)

As before, here too one can apply reasoning in which the kink at the beginning is assumed to
be at a very large distance from the inhomogeneity by which it has only non-zero kinetic energy
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resulting from the given initial velocity

Ein =
1
2
m0uc

2, (54)

and at the end of the motion, if it moves exactly at the critical speed, it will stop at the top of
the inhomogeneity occurring in the system with potential energy

Efin = V (x0 = L/2) =
32
3π

ε
[
2 arctan

(
tanh

L

4

)
+ sech

L

2
tanh

L

2

]
. (55)

Using this information along with the principle of conservation of energy, this leads directly to
the determination of the critical velocity value depending on the parameters of the junction as

uc =

√
8
3π

ε

√
2 arctan

(
tanh

L

4

)
+ sech

L

2
tanh

L

2
. (56)

In this manner, the controlling physical parameter for the system under study was determined.
Having this information, it becomes possible to analyze the effect of temperature on the ability
of the kink to pass through the potential barrier present in the system. The analysis of the
effect of temperature is based on the assumption that the bias current is a random dependent
(fluctuating) variable due to the non-zero temperature at the junction in the form

< Γ(t) >= Γ0. (57)

The described thermal noise can be considered within the white Gaussian noise framework

< Γ(t)Γ(t′) >= Aδ(t− t′). (58)

To determine the coefficient A appearing in the above equation, the system in thermal equi-
librium was considered when the equation describing the position of the kink has the following
form

u̇+ αu =
2
π
Γ− r, (59)

which, under assumption of constant r, has a following solution

u(t) =
2
π

∫ t
0
dt′ Γ(t′)eα(t

′−t) − r

α
(1− e−αt). (60)

This solution allows to calculate the time correlation function of the velocity and express it in
the thermodynamic limit as

< u(t)2 >=
2A
π2α
+
(
r

α

)2
− 4Γ0
πα2

r. (61)

After a sufficiently long time, when thermodynamic equilibrium is reached, the fluxon energy
can be expressed as

Ek =
1
2
m < u(t)2 >=

1
2
m

[
2A
π2α
+
(
r

α

)2
− 4Γ0
πα2

r

]
. (62)
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At the same time, under thermodynamic equilibrium and based on the principle of energy
equipartition, it is known that energy will be proportional to temperature as follows

Ek =
1
2
kT. (63)

These considerations directly lead to the determination of the value of the coefficient A in the
following form

A =
π2αk(T −∆T )

2m
, (64)

where

∆T ≡ m

k

[(
r

α

)2
− 4Γ0
πα2

r

]
. (65)

Due to the fact that in the described system there is a bias current, the fluctuations of which
are directly related to temperature, it is convenient to transform the above equation in such
a way that it contains the threshold value of the current, which directly corresponds to the
critical value of the velocity in this system. The above equation takes the form

∆T = Ω(Γc − Γ0)− ω (66)

where

ω ≡ m

k

[
4Γc
πα2

r −
(
r

α

)2]
, Ω ≡ 4m

πα2k
.

Summarizing the above considerations, the bias current dependent on thermal fluctuations is
expressed as

< Γ(t) >= Γ0, < Γ(t)Γ(t′) >=
π2αk(T −∆T )

2m
δ(t− t′). (67)

This equation becomes the starting point for derivation of the Fokker-Planck equation which
is detailed in Appendix B [64] of this article. These calculations lead to an equation describing
the stationary solution in the following form

P (u) =
√

m

2πk(T −∆T )
exp

(
− m

2k(T −∆T )
(u− us)2

)
. (68)

This becomes the basis for determining the total probability of a kink passing through the
potential barrier in this system.

∆P =
∫ ∞
uc

duP (u) =
1
2
erf

(√
m

2k(T −∆T )
| uc − us |

)
(69)

The results obtained were then compared with those from the solution of the full model. As
before, within the framework of solving the partial differential equation, Mathematica software
was used with the Adams method as the basis. Temperature fluctuations were generated by
randomizing the current bias using a function that allows for high randomness of the variable.
Each value of the initial kink velocity was repeated a thousand times to obtain satisfactory
statistics. The results derived in this way made it possible to demonstrate the validity of the
proposed formula over a wide temperature range. A detailed discussion of the results obtained
is given in section 3.
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Authorship contribution: My work as a co-author of this article consisted of partially per-
forming analytical calculations, performing all numerical calculations of the solution of the full
model for all cases, and reviewing and editing the final version of the manuscript.

2.3 Kink-inhomogeneity interaction in the sine-Gordon model

In the next paper, titled Kink-inhomogeneity interaction in the sine-Gordon model and pub-
lished in 2023 [60], the focus was on a thorough investigation of the behavior of kinks during
interactions with inhomogeneities. Unlike the first article, the primary objective here was not
to solely determine the controlling physical parameters, but rather to accurately describe the
interaction at velocities very close to the critical velocity value. Furthermore, the aim was to
investigate stable and quasi-stable solutions for this model. All of these behaviors have been
precisely described using models with one and two degrees of freedom. The general equation
containing dissipation and current bias was considered in the following form

∂2t φ+ α∂tφ− ∂x(F(x)∂xφ) + sinφ = −Γ. (70)

First, quasi-static solutions for the kink located on the top of the described inhomogeneity in
the case in which both the dissipation and bias current were zero were investigated. A linear
stability study of the deformed kink configuration φ0 requires a decomposition of the φ field
into kink and a small perturbation of the form ψ = eiωtv(x)

−∂x (F(x) ∂xv(x)) + (cosφ0) v(x) = λv(x). (71)

As can be seen, the function v satisfies an equation resembling the stationary Schrödinger
equation. Using the Newton-Raphson iteration, the identification of quasi-static solution φ0 of
the kink was performed. This procedure also calculates the Jacobian, which provides direct
information about the kink’s eigenfrequencies. The algorithm used in the Newton-Raphson
method was prepared using Matlab software. Moreover, the shape of the deformed, due to
the existence of inhomogeneity, kink configuration φ0 can be estimated based on the following
equation

−∂x (F(x)∂xχ) + (cosφK)χ = ε∂x (g(x)∂φK) , (72)

here φK stands for undeformed kink configuration. It was found that for a kink located on a
barrier in the spectrum, there is an unstable mode, which has its origin in the zero mode of
the kink solution present in sine-Gordon model without inhomogeneities. The presence of this
mode shows, the instability of the φ0 configuration.
Similar considerations have been performed for the case of the existence of current and

dissipation in the system. Based on similar reasoning, by application of the Newton-Raphson
method, the form of the deformed kink configuration stopped by the potential barrier was
established. Moreover, the stability of this configuration was proved on the base of the same
reasoning.
In the next part of the article under discussion, the main focus was on the effective descrip-

tion of kink dynamics in inhomogeneities. Initially, attention was concentrated on the change
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of the Lagrangian density

LFSG = LSG + Lε = LSG −
1
2
εg(x)(∂xφ)2. (73)

where LSG describes the Lagrangian density of the sine-Gordon model and Lε represents the
interaction of the field with inhomogeneity. In order to convert the full field theory model to
an ordinary differential equation, ansatz of the form was used

φk(t, x) = 4 arctan ex−x0(t). (74)

Here x0 is a collective variable describing the position of the kink. The effective equation of
motion describing the dynamics of this variable is of the form

ẍ0 = ε
(
1− x0 cothx0
sinh2 x0

− 1− (x0 − L) coth (x0 − L)
sinh2 (x0 − L)

)
. (75)

To obtain a more complete picture of the discussed interactions, projection onto the zero mode,
discussed in more detail within the framework of the first article, was also applied. This method
allowed to determine the equation of motion in the presence of dissipation and bias current in
the system

ẍ0 + αẋ0 + ε
(
x0 cothx0 − 1
sinh2 x0

− (x0 − L) coth(x0 − L)− 1
sinh2(x0 − L)

)
=
π

4
Γ. (76)

Both methods can describe the behavior of kink inside inhomogeneities with satisfactory accu-
racy and correctly predict the value of the first mode in the linear spectrum of kink excitation.
In addition, the second method also captured oscillations due to disipation, which occur in
the case of a kink whose initial velocity is insufficient to cross the potential barrier. The next
section also discusses the other approach based on the non-conservative Lagrangian method,
which allows the field equation to be obtained by taking into account the standard conservative
Lagrangian and the non-conservative contribution part leads to the equation

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ
= lim
φ−→0

{
lim
φ+→φ

[
∂R
∂φ−
− ∂µ

(
∂R

∂(∂µφ−)

)]}
. (77)

It is interesting to note that the final equation obtained in this way coincides with equation
eq. (76).
The remainder of this paper focuses on a detailed study of the two-degree-of-freedom model,

which should allow a better description of the kink dynamics. For this purpose, the ansatz was
used in the following form

φK(t, x) = 4 arctan eγ(t)(x−x0(t)). (78)

As in the case of methods using a one-degree-of-freedom, also here began with a construction
based on a conservative Lagrangian. For an instance in which the inhomogeneity is described
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by step functions, this leads to a system of the following equations of motion

ẍ+
γ̇

γ
ẋ0 +
1
4
εγ
[
sech2(γx0)− sech2(γ(x0 − L))

]
= 0,

2π2

3
γ̈

γ
− π2 γ̇

2

γ2
− 4γ2ẋ2 + 4

(
γ2 − 1

)
+ 2εγ2 [tanh(γx0)− tanh(γ(x0 − L))]

+ 2εγ3
[
x0 sech2(γx0)− (x0 − L) sech2(γ(x0 − L))

]
= 0.

(79)

A projection onto the zero mode was then performed, resulting in a set of equations for a system
with dissipation and bias current present. In particular, this system reduces to eq. (79) if the
dissipation and current are zero and has the form

ẍ+ αẋ0 +
γ̇

γ
ẋ0 +
1
4
εγ
[
sech2(γx0)− sech2(γ(x0 − L))

]
=

π

4γ
Γ,

2π2

3

(
γ̈

γ
+ α

γ̇

γ

)
−π2 γ̇

2

γ2
− 4γ2ẋ2 + 4

(
γ2 − 1

)
+ 2εγ2 [tanh(γx0)− tanh(γ(x0 − L))]

+ 2εγ3
[
x0 sech2(γx0)− (x0 − L) sech2(γ(x0 − L))

]
= 0.

(80)

These results were also compared with the non-conservative Lagrangian method, for which the
equations of motion took the following form

ẍ0 +
γ̇

γ
ẋ0 −

1
8γ
∂Lε
∂x0
= −αẋ0 +

π

4γ
Γ,

2π2

3
γ̈

γ
− π2 γ̇

2

γ2
− 4γ2ẋ20 + 4(γ2 − 1)− γ2

∂Lε
∂γ
= −2π

2

3
α
γ̇

γ

(81)

The results obtained from the conducted calculations allowed to approximate very well the so-
lutions of the full field-theory model through the proposed methods. In particular, the methods
with one degree of freedom satisfactorily describe the motion of the kink inside the inhomo-
geneities at velocity values close to the critical velocity, and correctly reflect the value of the
first oscillating mode in the linear spectrum. The addition of a second degree of freedom allowed
to improve the obtained description of the position of the kink, especially in the case of the
non-conservative Lagrangian model, which best describes both the behavior and equally cor-
rectly reflects the beginning of the continuous spectrum for the linear spectrum of quasi-stable
and stable kink solutions. A detailed discussion of the obtained results can be found in section 3.

Authorship contribution: My work as a co-author of this article consisted of partially per-
forming analytical calculations, performing all numerical calculations of the solution of the full
model and approximate methods, and partially preparing the final version of the manuscript.

2.4 An effective description of the impact of inhomogeneities on the
movement of the kink front in 2+1 dimensions

The culmination of the research conducted in this dissertation is an article entitled An effective
description of the impact of inhomogeneities on the movement of the kink front in 2+1 dimen-
sions, which was published in 2024 [65]. This study focuses on the analysis of the effects caused
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by the presence of inhomogeneities on the movement of kink fronts in the 2+1 dimensional
case. As before, a sine-Gordon model including a dissipation term and a current bias is also
considered alongside with a term describing evolution in the second spatial dimension. The
model is described as follows

∂2t φ+ α∂tφ− ∂x(F(x, y)∂xφ)− ∂2yφ+ sinφ = −Γ. (82)

One of the effective methods for describing a system in which dissipation is present is to
use the framework introduced in the publications [66, 67]. The presented method is based on
a nonconservative Lagrangian density, with the variables of the system duplicated, in which
additional term is included to address nonconservative forces

LN = L(φ1, ∂tφ1, ∂xφ1, ∂yφ1)− L(φ2, ∂tφ2, ∂xφ2, ∂yφ2) +R. (83)

In the above formula, L stands for standard lagrangian density

L(φ, ∂tφ, ∂xφ, ∂yφ) =
1
2
(∂tφ)2 −

1
2
F(x, y)(∂xφ)2 −

1
2
(∂yφ)2 − V (φ). (84)

Assuming the form of the function R = −αφ−∂tφ+ − Γφ− in the above notation, it is possible
to determine the model according to eq. (82). On the basis of such a proposed description of the
studied system, it becomes possible to perform further calculations to determine an effective
1+1 dimensional model describing the movement of the center of the kink front using the
Euler–Lagrange equations. Detailed calculations are thoroughly presented in the article, and as
a result, a model of the form is given

M∂2tX −M∂2yX − ε
∫ +∞
−∞

g(x, y)K
′
(x−X)K ′′

(x−X)dx = −αM∂tX + 2πΓ, (85)

where K(x −X) = φk(t, x) from eq. (74). The function g(x) appearing in the above equation
defines the inhomogeneity present in this system as a component of the function F from eq. (82)
as follows

F(x, y) = 1 + εg(x, y) = 1 + εp(x)q(y). (86)

In particular, this function can be considered as the product of the part that depends on the
x variable and the part that depends on the y variable. Taking this into account, it becomes
possible to calculate the integral occurring within eq. (83), which for the case when the inho-
mogeneity function for the x variable has a stepped form

∂2tX + α∂tX − ∂2yX +
1
8
εq(y)

sech(h
2
+X

)2
− sech

(
h

2
−X

)2 = 1
4
πΓ. (87)

On the other hand, if one considers the case in which inhomogeneity is characterized by a
continuous function

p(x) =
1
2

(
tanh

(
x+

h

2

)
− tanh

(
x− h

2

))
, (88)
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then the following equation is obtained

∂2tX +α∂tX − ∂2yX +
1
2
εq(y)

(
(h2 +X) coth(

h
2 +X)− 1

sinh2(h2 +X)
−
(h2 −X) coth(

h
2 −X)− 1

sinh2(h2 −X)

)
=
1
4
πΓ.

(89)
Taking the 1 + 1-dimensional model given in this way, the next part of the article discusses
its comparison with the solution of the full field theory model. Initially, these comparisons
focus on the case of a homogeneous system in which the parameter describing the height of
inhomogeneity is zero. A comparison of the two results for the initial velocity determined from
the dissipation constant and the bias current shows very good agreement between the obtained
results.
Various scenarios were then analyzed, including deformations of the kink front (sinusoidal

and more complex shapes), and comparisons were made at different time intervals.The results
indicate that the approximate model accurately reflects the results of the full-field model,
especially for slower front deformations. The next section of the paper focuses on the case
with uniform inhomogeneity in the y-direction. It analyzes scenarios such as kink reflection
from the barrier, interaction with near-critical parameter values and high-speed kink motion.
Each scenario was analyzed under different conditions, such as with and without dissipation
and external forcing. Comparisons show good agreement between the two models, with minor
deviations observed in some cases. The last section of the numerical comparisons presents a
situation in which the inhomogeneity is explicitly two-dimensional and takes the form of a
peak or well of potential. Various interactions (such as passing through or stopping by the
inhomogeneities) are examined, with the approximate model showing good agreement with the
full model, especially in long-term simulations.
The numerical results show that the 1 + 1-dimensional effective model is generally in good

agreement with the 2+1-dimensional full-field model in various scenarios, with some limitations
in more complex cases.
Two cases of stable solutions are observed when the full field theory model is solved. The

first is a kink trapped in the potential well, whereas the second is a kink that stops before the
peak occurring in the system if dissipation is present. To further investigate these phenomena,
the last part of the article examines the linear stability in these cases. The linear spectrum of
a stable kink solution can be determined based on the following equation

−∂x (F(x, y) ∂xv(x, y))− ∂2yv(x, y) + (cosφ0) v(x, y) = λv(x, y), (90)

the function φ0 is determined using the Newtona-Raphsona method. The results obtained were
compared with approximate solutions showing satisfactory agreement. A detailed discussion of
the results obtained is given in section 3.

Authorship contribution: My work as a co-author of this article consisted of partially per-
forming analytical calculations, performing all numerical calculations of the solution of the full
model for all cases, and reviewing and editing the final version of the manuscript.
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3 Conclusion

The research presented in this dissertation delves deeply into the dynamics of kink solutions
in the modified sine-Gordon model, undertaking a thorough investigation of how localized
inhomogeneities which perturb translational invariance and the effect of thermal noise affects
kink’s motion.
This research is conducted not only in the 1 + 1 dimensional case, but also for 2+1 dimen-

sions, including the explicit consideration of two-dimensional inhomogeneities. This involves
analyzing how the introduction of additional spatial parameters changes the behavior of kink
solutions and affects the stability and evolution in these systems. Exploring multidimensional
spaces provides a richer context for understanding the complex interactions and phenomena
that occur in the modified sine-Gordon model, particularly in scenarios where conventional
analyses may not capture the full spectrum of dynamics present in more complex systems.
Through this multifaceted approach, the research aims to provide a more comprehensive un-
derstanding of the phenomena behind kink solutions, offering insights that could be crucial to
advancing the field and applying these findings to practical usage.
The first article discussed provided insight and understanding of the effect of the presence

of inhomogeneities in the system on the controlling physical parameters of the junction. The
calculations examined four methods of describing kink dynamics. In the case of the first three
methods, which have their previous reflection in the approaches known from the literature, it
was possible to propose corrections that, after considering the active mass of the kink in place
of its static mass, allow reproducing in a very good way the results of the solution of the field
model. However, a new approach for this system is the use of projection on the energy density.
The obtained results, which in their idea also allow taking into account the better focused part
of the kink, which is actively involved in the interaction with inhomogeneities, show satisfactory
agreement with the full model. In addition, it is worth noting here that this method does not
require additional fitting of parameters. The results of the critical velocity values depending
on the parameters of the junction curvature are directly applicable to experimental systems
consisting of Josephson junctions. This is due to the fact that by determining the value of this
velocity, it becomes possible to determine the relationship between dissipation and threshold
bias current occurring in the system.
Continuing the study of the behavior of the controlling physical parameters in the case of a

curved Josephson junction described by the sine-Gordon model, the following study considers
the effect of non-zero temperature on the process of potential barrier penetration. Using the
Fokker-Planck equation, an analytical model describing the probability of kink transition and
reflection was obtained. Comparison of the received results showed that the achieved descrip-
tion reflects the simulations resulting from the solution of the field model very well. The only
deviation from the proposed description appears at temperatures less than 1K. In this case,
even the use of the relativistic model did not result in a significant improvement. However,
while conducting calculations, it was possible to observe the occurrence of resonance windows,
which can explain the obtained discrepancy. The windows correspond to narrow sets of initial
parameters for which there is a transition below the critical velocity or its absence above this
velocity. This fact makes the estimation of probabilities for values that belong to the ranges
of occurrence of resonance windows very difficult, leading at the same time to distortion of
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the results. The cause and the mechanism causing the occurrence of this phenomenon in the
studied system remain unclear. The explanations presented so far are based on the influence of
the excited mode present in the linear spectrum of the kink, however, this description is specific
to the φ4 model and does not find its direct translation to the issue discussed here. This is due
to the fact that in the linear spectrum of kink in the sine-Gordon model such a mode is not
present. This issue is an element of further research and an interesting starting point for future
studies.
The first article presented in this dissertation primarily focused on determining the con-

trolling physical parameters of the studied system. However, in order to be able to describe
the interaction of the kink with inhomogeneities in detail and accurately, it is also crucial to
precisely study the very moment of interaction. This issue was addressed in the third article,
which very carefully analyzed the interaction between the potential barrier due to the curvature
of the junction on the movement of the kink for values very close to critical values, and the
existence of stable solutions in this system. In each of the cases discussed, it was possible to
prepare approximate models with one and two degrees of freedom that describe the dynamics
of the kink very well. The calculations also identified the saddle point and the static solution
point, in phase space of the system, for the case of dissipation. Moreover, in both cases, the
linear spectrum of the kink solution was determined, which made it possible to identify and
describe both the translational mode and the origin of the continuous spectrum.
A generalization of the study discussed above and the culmination of this dissertation is

the fourth article, which focuses on the 2+1 dimensional case. The motivation for this research
stemmed directly from the results obtained in the earlier study. To be able to effectively describe
the evolution of the kink front, a non-conservative Lagrangian method was used here, which
allowed to approximate the solutions of the full model very well. This method was evaluated very
extensively first by studying the behavior of the kink in a system without inhomogeneities for
that with a perturbed initial state. These results confirmed that the proposed 1+1 dimensional
model effectively reproduces the solutions of the full-field model. An analogous observation
was made when the inhomogeneity present in the system was homogeneous in the direction of
the variable transverse to the kink motion. It is worth noting here that in such a case, these
results are directly applicable to the 1+1 dimensional case. The resulting confirmation of the
usefulness of the proposed model allowed us to move on to the more interesting cases, in which
this inhomogeneity is overtly two-dimensional in this system, i.e., it is in the form of a peak or a
well of potential. The proposed model also adequately describes the studied dynamics in these
cases. However, an unusually important finding here seems to be the fact that in cases where
the kink is stopped, either inside the well or in front of the peak, if there is a dissipation in the
system, the model captures the final state of the solution very well. The analysis of the line
spectrum for the static solutions mentioned earlier is also a very interesting result. Moreover,
the behavior of the excited modes present in this spectrum was successfully replicated using
the proposed approximate model.
The problems presented in this dissertation form a single whole that explores the interac-

tion between kink and inhomogeneity. These results represent a significant step forward in our
understanding of these complex physical processes and provide a basis for further theoretical
research as well as practical applications of the obtained results. In the first case, it seems
particularly important to continue the current research toward studying inhomogeneities inter-
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acting radially with kink. It would also probably be an interesting case to test the proposed
model in 3+1 dimensional cases. The explanation and description of the resonance windows
observed in the studied system also remains an open problem. The second outcome of the re-
search presented here could be its use in practical applications. For those practical applications
of Josephson junctions presented in the introduction, a description of the dynamics of fluxon
inside the junction is essential. In addition, the design of junctions with desired properties can
be achieved by engineering the geometry of the junction, i.e., changing the curvature. The re-
sults obtained can provide a basis for further development of the devices presented earlier and
the creation of future electronics based on quantum effects occurring in Josephson junctions.
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1. Introduction

Solitons, which are solutions of some nonlinear field equa-
tions, were introduced to mathematical physics by N. Zabusky
and M. Kruskal [1]. The existence of solitons is possible due to the
balance between dispersion and nonlinearity of a system. In 1967
a method for solving the initial-value problem for the KdV equa-
tion was presented. The method is known as an inverse scattering
transform and enables construction of analytical solutions in this
model [2]. Originally solitons, discovered in the framework of the
Korteweg de Vries equation, explained the behaviour of solitary
waves on shallow water channels. It soon turned out that this
equation could be successfully used to describe other physical
systems such as plasma [3], anharmonic lattices [4], and elastic
rods [5]. Moreover, other solitonic equations have been discov-
ered and applied to describe various physical systems. In addition
to the KdV equation the most famous integrable systems are de-
fined by the nonlinear Schrödinger [6] and sine–Gordon equation
[7–11]. The last of these equations originally appeared in the
19th century, in the context of studying surfaces with a constant
negative curvature as the Gauss–Codazzi equation. Currently, this
model is used in various ways to describe physical and biological
systems. In particular in biology it is applied in the description
of living cellular structures, including DNA, microtubules, protein
folding and neural impulses [12]. In physics the model has found
applications in condensed matter, gravitational and high-energy
physics [13–21]. On the other hand, many condensed matter
systems can be described by the solitonic equations that are

∗ Corresponding author.
E-mail address: tomasz.dobrowolski@up.krakow.pl (T. Dobrowolski).

modified by some additional terms which, in an explicit way,
break translational invariance. Originally such modifications were
included in the kink potential (1 + εg(x))(1 − cosφ), where
ε controls the strength of the modification and g(x) its form
[22–24]. In these articles g(x) described microshorts or spatially
periodic inhomogeneity. Moreover, spatially inhomogeneous bias
current was introduced in article [25]. Modifications of the sine–
Gordon model are also discussed in papers [26–46]. In the present
article we consider the sine–Gordon equation in the form [46]

∂2t φ − ∂x (F(x) ∂xφ)+ sinφ = 0, (1)

where F(x) is some function with explicit position dependence.
Analytical studies of the behaviour of the soliton in the pres-
ence of inhomogeneity are usually extremely difficult. One of
the most popular analytical techniques used in these studies is
the collective coordinate method. This technique allows a re-
duction of the infinite number of the field degrees of freedom
to a finite number of particle coordinates. The mechanical de-
grees of freedom obtained in this way usually describe posi-
tions of solitons and their sizes. The particle degrees of freedom
were introduced to the effective description of solitons in papers
[47–51] where the authors constructed an effective Lagrange and
Hamilton description of the scalar field models. In this approach
the soliton is reduced to a particle whose translational motion
may be coupled to some internal degree of freedom. This internal
degree of freedom describes changes of the kink width and there-
fore the soliton is replaced by a deformable material particle. In
this paper we concentrate on the simplest collective coordinate
models that describe the position of the kink in the system that, in
an explicit way, breaks translational invariance. We consider the
process of the interaction of the kink with inhomogeneity present

https://doi.org/10.1016/j.physd.2021.133061
0167-2789/© 2021 Elsevier B.V. All rights reserved.
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Fig. 1. Cross-section of the Josephson junction along the central line. The
position dependent frame is located on the central line. The dielectric layer
has thickness a and both superconducting electrodes are penetrated by the
magnetic field at a distances λT and λB equal to London’s penetration depths.
In reality the thickness of the dielectric layer is much smaller than London
penetration depths. The contour consists of two parts, placed deeply in the
superconductive electrodes LT and LB and two parts LL and LR perpendicular
to the vector potential A⃗.

in the system. We chose as a control parameter the critical speed
of the kink that separates two regimes. In the first regime the kink
is reflected from the inhomogeneity while in the second passes
through it. This choice of the control parameter is motivated by
the fact that in Eq. (1), supplemented by dissipation and bias
current, critical velocity determines directly measurable critical
current.

We compare three methods that rely on the collective coordi-
nate that provides the location of the soliton. The first method
compares the energy of the kink in homogeneous and inho-
mogeneous systems [47–52]. The second method is based on
the perturbation scheme proposed in the paper [52]. The third
method relies on the procedure of projection of the field equation
onto the zero mode of the soliton [52–54]. We also propose a
method which is based on projection of the field equation onto
the energy density of the kink solution. We analyse the results
of these methods, and we draw conclusions about the reasons
for the discrepancy of the approximate methods with the exact
results derived from the field equation. We also, in the example
of the energetic approach, propose a method of correction of the
collective coordinates approaches.

2. Physical context

In this section we will construct an example that physically
justifies the existence of the dispersion term in the form present

in Eq. (1). We consider the device made of two superconductive
electrodes separated by a very thin dielectric layer. After the
discoverer of the principles of operation of this device by Brian
D. Josephson, it is called the Josephson junction [55]. A high
level of correlation present in the superconductor enables the
description of each superconductor (in low energy limit) using
the many particle wave function ψ = |ψ | eiϕ , where the sec-
ond power of modulus describes the density of superconductive
charge carriers. Moreover, due to small separation of electrodes
the macroscopic wave functions of the electrodes overlap which
leads to the correlation of the phases of the wave functions of
both electrodes. In the low energy limit the leading dynamical
variable is the gauge invariant difference of the phases of the
above wave functions. In order to find an equation describing the
dynamics of this variable in the case when the junction is curved
we consider currents and fields present in the junction. In the
presence of the electromagnetic fields in the junction the electric
current density has the form

j⃗ =
e∗

m∗

[
1
2
ı h̄

(
ψ∇ψ∗

− ψ∗
∇ψ

)
−

e∗

c
A⃗ψψ∗

]
, (2)

where A⃗ is a vector potential, c is the speed of light in a vacuum,
m∗

= 2m is the mass of the Cooper pair and e∗
= 2e is its charge

(m and e are mass and charge of the electron). After inserting the
expression ψ = |ψ | eiϕ into the last equation, we get

j⃗ = |ψ |
2 e
m

[
h̄∇ϕ −

2e
c
A⃗

]
. (3)

We aim to obtain the equation for the dynamic of the gauge
invariant phase difference of the phases of macroscopic wave
functions, and therefore from Eq. (3) we determine the phase
gradient

∇ϕ =
2e
h̄c

[
mc

2|ψ |
2e2

j⃗ + A⃗
]
. (4)

We intend to describe the curved Josephson junction and there-
fore we use curved coordinates based on the central curve located
in the isolator layer of the junction. More specifically, first we
choose the surface located in the dielectric layer in this way
that it is equally separated from both superconducting electrodes
by the distance equal to half of the thickness of the dielectric
layer. In the middle of this surface we choose the central line.
In particular, if the described surface is a plane (in the case if a
junction is not curved) the central curve is a longer symmetry
axis of the considered surface. Next we introduce coordinates:
the first coordinate, along the curve, we denote by s, the next
coordinate ρ parameterizes the direction normal to the curve but
located in the surface (geometrically it is a binormal direction to
the curve). The last coordinate denoted by u parameterizes the
direction normal to the curve, surface and the dielectric layer.
Location of the coordinates is presented in Figs. 1, and Fig. 20
in Appendix A. In other words, the curve is fitted to the curvature
of the junction. Additionally, we assume that the dynamics is
restricted to the direction of the central curve. This is possible if
the curve is plane, the magnetic field is parallel to the dielectric
layer and has direction of the ρ coordinate. Moreover we presume
that the fields are homogeneous in the direction of the ρ variable
i.e. they do not depend on this variable. This physical situation
can be described by the vector potential having (in appropriate
gauge) only As component. In these settings we consider the
system depicted in Fig. 1. In curved coordinates the last formula
simplifies significantly (see Appendix A)

1
G
∂sϕ = (gradϕ)s =

2e
h̄c

[
mc

2|ψ |
2e2

jsSH + As

]
=

2e
h̄c

As, (5)
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where jsSH is shielding current density. We choose the contour
(in Fig. 1) in this way that it is closed deeply in superconducting
electrodes, out of the region penetrated by the magnetic field and
therefore the shielding current vanishes and so reduction of the
Cooper pair density has no place. For the contour sections LT and
LB located in the top and bottom electrodes, this equation can be
written using integrals of the vector potential A⃗
1
G
(ϕT (s) − ϕT (s + ds)) =

2e
h̄c

∫
LT

dsAs, (6)

1
G
(ϕB(s + ds) − ϕB(s)) =

2e
h̄c

∫
LB

dsAs. (7)

Adding the last two equations and remembering that the vector
potential is perpendicular to the left and right (LL and LR) parts of
the contour, we get
1
G
(φ(s + ds) − φ(s)) =

2e
h̄c

∮
d⃗lA⃗, (8)

where φ(t, s) = ϕB(t, s) − ϕT (t, s). The right side of this equa-
tion by the Stokes theorem can be used to find the relationship
between the field φ and the magnetic field Hρ i.e.∮

d⃗l A⃗ =

∫ ∫
S
dS⃗ curlA⃗ =

∫ ∫
S
dS⃗H⃗ = dmdsHρ . (9)

The last equality is a consequence of the fact that the magnetic
field is nonzero only in the layer with thickness dm = a+λT +λB,
where λT and λB are London’s penetration depths in the top and
bottom electrodes. Combining Eqs. (8) and (9) in the limit of small
ds we get the relation between φ and the magnetic field Hρ

1
G
∂sφ =

1
G

(
φ(s + ds) − φ(s)

ds

)
=

2e
h̄c

dmHρ . (10)

On the other hand, the Ampere’s circular law with the Maxwell
correction relates the magnetic field with the current in the
central layer of the junction

curl H⃗ =
4π
c

j⃗ +
1
c
∂t D⃗. (11)

The u component of Eq. (11) in curved coordinates has the form
(see Appendix A)
1
G

[
∂sHρ − ∂ρ(GHs)

]
=

4π
c

ju +
1
c
∂tDu . (12)

First we relate the u-th component of the electric displacement
field Du with the appropriate component of the electric field Eu
and then with scalar V potential

Du = εEu = ε(−∂uV −
1
c
∂tAu) = −ε∂uV . (13)

We recall that in the situation considered by us the vector po-
tential A⃗ possess only the As component (i.e. Au = 0). The last
equation can be used in order to describe the potential jump
between the lower and upper surfaces of the dielectric layer

aDu = −ε(V (a/2) − V (−a/2)) = ε(VB − VT ) = ε∆V . (14)

Now we put the electric displacement field Du from Eq. (14)
into Eq. (12)
1
G
∂sHρ =

4π
c

ju +
ε

ac
∂t (∆V ). (15)

We also used the fact that the magnetic field possess only one
nonzero component Hρ ≠ 0. The potential jump, due to the
second Josephson law, is directly related to the time derivative
of the phase difference

∂tφ =
2e
h̄
∆V . (16)

In order to eliminate the magnetic field Hρ and the potential jump
∆V from Eq. (15) we use relations (10) and (16)

h̄c
2edm

∂s

(
1
G
∂sφ

)
= G

4π
c

ju + G
ε

ac
h̄
2e
∂2t φ. (17)

Next we average the last formula with respect to the normal
variable i.e. we divide by the thickness of the dielectric layer a and
integrate with respect to the normal variable from the bottom to
the top boundaries of the dielectric layer ( 1a

∫
+a/2
−a/2 duf )

h̄c
2edm

∂s (F ∂sφ) =
4π
c

ju +
ε

ac
h̄
2e
∂2t φ. (18)

Here 1
a

∫ +
a
2

−
a
2
du G = 1 and function F is given by the formula

F(s) =
1
a

∫
+

a
2

−
a
2

du
1
G

=
1
a

∫
+

a
2

−
a
2

du
1

1 − uK (s)

=
1

aK (s)
ln

(
2 + aK (s)
2 − aK (s)

)
. (19)

The current density through the dielectric layer is described by
the first Josephson relation ju = j0 sinφ and therefore Eq. (18)
becomes an equation for a phase difference φ

h̄c2

8πedm
∂s (F ∂sφ) = j0 sinφ +

ε

4πa
h̄
2e
∂2t φ. (20)

If we denote c̄ =

√
a
εdm

c and λJ =

√
h̄c2

8πedmj0
then the last equation

simplifies to the form
1
c̄2
∂2t φ − ∂s (F ∂sφ)+

1
λ2J

sinφ = 0, (21)

where λJ is the Josephson penetration depth and c̄ is the Swi-
hart velocity. If we use dimensionless units i.e. rescale length
by Josephson penetration depth s →

1
λJ
s and time by plasma

frequency t → ωP t =
c̄
λJ
t this equation can be simplified as

follows

∂2t φ − ∂s (F(s) ∂sφ)+ sinφ = 0. (22)

On the other hand this equation follows from the lagrangian
density

L =
1
2
(∂tφ)2 −

1
2
F(s)(∂sφ)2 − V (φ), (23)

where V (φ) = 1−cosφ. The other way of obtaining this equation
is presented in article [46].

3. Kink dynamics in the field model

We consider the sine–Gordon model modified by the position
dependent function F(x) which breaks translational invariance of
the original model. The modification of this type, is motivated
by the studies of the propagation of the fluxons in the curved
Josephson junction. The above mentioned model is defined by the
following equation of motion

∂2t φ − ∂x(F(x)∂xφ) + sinφ = 0. (24)

The presence of the inhomogeneity represented by the function
F(x) introduces a kind of potential barrier to the system, which
could stop the kink during its motion through the system. We
presume the form of the function F which is convenient for
analytical studies

F(x) = 1 + εg(x), g(x) = θ (x) − θ (x − L). (25)

We choose the critical velocity as a controlled physical parameter
that characterizes the dynamical properties of the original and the
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effective models. The critical velocity distinguishes two regimes.
In the first regime the kink is reflected from inhomogeneity, while
in the second it passes through the barrier. This approach is
motivated by the results of simulations performed in the model
(24). The simulations were carried out, using the Adams method
along with the maximum step parameter set to infinity. In each
of the counted cases the initial position was taken x0 = −50.
The simulations were conducted on the interval [−300, 350]. In
figures we present only part of this interval. Presumed boundary
conditions at the boundaries correspond to a sector with a unit
topological charge. In order to avoid the return (to the area of
interaction) of the energy radiated during the interaction of the
kink with heterogeneity, we additionally applied suppression at
the boundaries of the considered area. The obtained results were
twofold. For low initial velocities, the kink was reflected from
the area of heterogeneity. For higher speeds the passage over the
barrier took place. Exemplary results are shown in Fig. 2. In this
figure the parameter ε is taken equal to 0.2. Figures show the
field configuration at different instants of time for the same initial
speeds u0 = 0.4100 in A and u0 = 0.5400 in B. The grey region
in the figures represents the area of inhomogeneity (the size of
this region is L = 10). The same process of interaction of the kink
with inhomogeneity for the same values of the initial speeds is
presented in Fig. 3. This figure shows the movement of the centre
of mass of the kink in the case where there is a reflection and
passage of the kink through the potential barrier. The results of all
simulations are collected in Fig. 4 that contains the dependence
of the critical speed on the ε parameter. Here the critical velocity
is determined with an accuracy of 0.0001.

4. Approximate descriptions of the kink dynamics

In the current paper we concentrate on the effective descrip-
tion of the kink motion in this system by comparing several
methods.

4.1. Method I - energy approach

The first method is based on the analysis of the energy carried
by the kink solution. The reference system is specified by the
sine–Gordon (homogeneous) equation

∂2t φ − ∂2x φ + sinφ = 0. (26)

The total energy of the arbitrary field configuration in this model
follows from Noether’s theorem

E =

∫
+∞

−∞

dx
[
1
2

(∂tφ)2 +
1
2

(∂xφ)2 + (1 − cosφ)
]
. (27)

The model (26) in contradiction to the model (1) is proven to be
completely integrable. In particular, an inverse scattering method
can be applied in order to construct soliton solutions. The best
known solution of the model is the stationary kink given by the
function

φ(t, x) = 4 arctan eζ (t,x), ζ = γ (x − ut), γ =
1

√
1 − u2

, (28)

where u is kink velocity. The energy corresponding to this partic-
ular configuration can be obtained by inserting this solution into
the formula (27). First we simplify this expression by change of
variables

E =
1
2

∫
+∞

−∞

dx

[(
∂ζ

∂t

)2

(∂ζφ)2 +

(
∂ζ

∂x

)2

(∂ζφ)2 + 2(1 − cosφ)

]
.

(29)

Fig. 2. Field configuration in different instants of time. The grey region of the
figure represents inhomogeneity. In figures A the initial velocity of the kink is
u0 = 0.4100 and in figures B this parameter is set to u0 = 0.5400. In both cases
the initial position of the kink is x0 = −50, L = 10 and parameter ε = 0.2.

Next, we use the Bogomolny (∂ζφ)2 = 2(1 − cosφ) equation in
order to transform the potential term

E =
1
2

∫
+∞

−∞

dx

[(
∂ζ

∂t

)2

+

(
∂ζ

∂x

)2

+ 1

]
(∂ζφ)2. (30)

Finally we change the integration variables and use the explicit
form of the kink solution (∂ζφ = 2 sechζ )

E =
1

√
1 − u2

∫
+∞

−∞

dζ 4 sech2ζ =
8

√
1 − u2

. (31)

This result suggests that the kink can be seen as an energy knot
propagating with constant velocity. The analytical form of the
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Fig. 3. The trajectory of the centre of mass of the kink. The initial speeds are u0 = 0.4100 in figure A and u0 = 0.5400 in figure B. The inhomogeneity is located in
the interval [0, 10]. The initial position of the kink is x0 = −50 and the inhomogeneity parameters are ε = 0.2 and L = 10.

Fig. 4. The critical velocity of the kink as a function of the ε parameter in the
field model.

Fig. 5. The effective potential (39), for small velocities (i.e. γ → 1). In the
figure the function U is compared for ε = 0.5 and different values of L. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

total energy of this field configuration is typical for the relativistic
particles. One could show that the relation between momentum,
mass, and velocity is also characteristic for the relativistic par-
ticles and therefore the kink in the first approximation may be
treated as a point particle. The total energy at rest is interpreted
as the rest mass of this particle m0 = 8 (in the paper we use units
in which c̄ = 1).

On the other hand, in the modified model (1) the total energy
is slightly changed

EF =

∫
+∞

−∞

dx
[
1
2

(∂tφ)2 +
1
2

F(x)(∂xφ)2 + (1 − cosφ)
]
. (32)

In the paper we presume the particular form of the function
F(x) which represents inhomogeneity that breaks translational
invariance

F(x) = 1 + εg(x), g(x) = θ (x) − θ (x − L), (33)

where θ (x) is the Heaviside step function. We also presume ansatz
in the form

φ(t, x) = 4 arctan eξ (t,x), (34)

where this time

ξ (t, x) = γ (t)(x − x0(t)), γ (t) =
1√

1 − u2(t)
, u = ẋ0(t). (35)

Compared to the system (27) the energy of the field configuration
in the inhomogeneous system has an additional term. The for-
mula (32) for the considered system can be rewritten as follows

EF = E +
1
2

∫
+∞

−∞

dx (F(x) − 1) (∂xφ)2, (36)

which simplifies even more for the inhomogeneity described by
the formula (33)

EF = E +
1
2
ε

∫ L

0
dx(∂xφ)2. (37)

If we insert into this equation the kink ansatz and then perform
direct integration we obtain

EF =
8

√
1 − u2

+ U(x0). (38)

One can see that it is enriched by the potential energy U(x0).
The function U is presented in Fig. 5 and its analytical form is the
following

U(x0) = 2γ ε(tanh(ξ (t, x = L)) − tanh(ξ (t, x = 0))). (39)

We assume that at the initial instant of time the kink is
located far from the inhomogeneity and therefore in this area
U is negligibly small. Moreover, we choose the initial velocity
which is barely sufficient to reach the maximum of the potential
barrier. Under these conditions the total energy of the kink, at the
beginning of its motion, is as follows

(EF )in =
8√

1 − u2
c

.
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Fig. 6. The interaction of the kink with the inhomogeneity. The black continuous line represents the position of the centre of mass of the kink that follows from
the field model and the green line follows from the approximate model (43). The initial position of the kink is x0 = −50 and the initial velocities are respectively
u0 = 0.4100 in figure A and u0 = 0.5400 in figure B. The size of the inhomogeneity is L = 10 and its amplitude ε = 0.2. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The dependence of the critical speed uc on the barrier height ε for L = 1.
The black points represent numerical results obtained from the field model (24)
and the green line represents the results of the simplified Model I (43). The
initial position of the kink is x0 = −50. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

At the end of its motion the kink stops at the top of the barrier
and therefore has the total energy

(EF )fin = 8 + 4ε tanh
L
2
,

here we replaced U with its maximal value Umax = 4ε tanh L
2 .

Using conservation of the energy (EF )in = (EF )fin we obtain
the relation between the critical velocity and parameters of the
barrier

uc =

√
1 −

1
(1 +

1
2ε tanh

L
2 )

2
. (40)

In order to have the possibility to compare this approach with
other approximate methods we also obtain the ordinary differ-
ential equation that describes propagation of the kink. In the
present approach the kink is treated as a relativistic point particle
in the potential U . Therefore we use the relativistic equation of
motion [56]
d
dt

(m0γ u) = F , (41)

in the above equation the force is calculated as follows

F = − ∂x0U(x0) = − 2εγ 2(sech2γ x0 − sech2γ (L − x0)). (42)

The left hand side of Eq. (41) can be simplified after performing
its differentiation

d
dt

(
8u

√
1 − u2

)
=

8u̇
(1 − u2)3/2

.

Eq. (41) can be represented as the system of equations

du
dt

=
1
4
ε
√
1 − u2

(
sech2 L − x0

√
1 − u2

− sech2 x0
√
1 − u2

)
,

dx0
dt

= u . (43)

First, the dynamics that follows from this system of equations can
be compared with the motion of the centre of mass of the kink
that follows from the field model (24). In this model the field
dynamics is studied at the interval [−300, 350] and the boundary
conditions that correspond to the unit topological charge are
adopted. In both approaches the initial position of the kink is
x0 = −50, the inhomogeneity parameter is ε = 0.2 and the
initial velocities are u0 = 0.4100 in Fig. 6.A and u0 = 0.5400
in Fig. 6.B. The inhomogeneity is represented by the grey region
in the figures (it is located in the interval [0, 10]). In Fig. 6.A
we observe reflection of the kink. In this case some difference
appears during the time of interaction with inhomogeneity. The
difference is very visible in Fig. 6.B that describes passing the
kink through heterogeneity. Finally, we compare the critical ve-
locities that were obtained in the framework of the complete
field model (24) with the velocities which result from the ap-
proximate method (43). We investigated the dependence of the
critical velocity on the magnitude of the potential barrier ε and
on its spatial size L. We studied the potentials characterized by
the length parameter belonging to the interval L ∈ (0, 100]. We
have found that providing the size of the considered barrier is
in the interval L ∈ (0, 4] the system of Eqs. (43) approximates
the critical speed relatively well, even for relativistic velocities
(see Fig. 7). Let us notice that in this regime the parameter L also
affects the height of the barrier and therefore the height of the
barrier is smaller than the height indicated by the value of the
parameter ε. The approximation becomes much less accurate for
L ∈ (4, 200]. In this regime the height of the barrier is uniquely
determined by the parameter ε (especially when a clear plateau
of the barrier is formed). The discussed model in this regime
clearly underestimates the values of the critical speed that follow
from the field model (see Figs. 8–9). It is essential that the plots
for other L > 4 are almost identical as for L = 10. In this sense the
behaviour shown in Figs. 8–9 is generic for the considered system.
For example, Fig. 9 contains data for L = 200, as we mentioned
earlier, there is no significant change in the dependence of the
critical speed on parameter ε in relation to the plot for L =

6
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Fig. 8. The dependence of the critical speed uc of the kink, initially located at
x0 = −50, on the barrier height ε for L = 10. Similar to the previous figure
the black points represent numerical results obtained from the field model (24)
and the green line represents the results of the simplified model I (43). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 9. The dependence of the critical speed uc on the barrier height ε for
L = 200. The black points represent numerical results obtained from the field
model (24) and the green line represents the results of the simplified model
I (43). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 10. The part of the kink that is directly involved in interaction.

10. The differences are unnoticeable because they are in fourth
decimal place. The other parameters are the same as in Fig. 8.

First we identify the problem. Let us notice that in contradic-
tion to normal effective treatment the kink configuration does not

Fig. 11. Active mass for different values of L parameter as function of ε. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

behave like a rigid body of mass m0 = 8. In a real system only
part of the kink, where most of the kink energy is concentrated,
participates in the interaction (see Fig. 10). One of the reasons
is the causality of interactions. We verify this hypothesis making
a correction of the kink mass i.e. replacing m0 = 8, present
in Eq. (41), by

ma = µ+ λε. (44)

We claim that only this part of the kink mass in an active way
participates in the interaction process. We estimate the mass
as a linear function of the parameter ε because it reflects the
linear dependence of the potential barrier on its height. Next, we
perform a numerical procedure based on Eq. (43) with the kink
mass replaced by its active mass i.e.

du
dt

=
2
ma

ε
√
1 − u2

(
sech2 L − x0

√
1 − u2

− sech2 x0
√
1 − u2

)
,

dx0
dt

= u . (45)

The resulting masses, that guarantee the best fits, for different
potential sizes L, as functions of ε parameter are presented in
Fig. 11. Fig. 11 shows that for a small barrier height only half
of the total mass of the kink can participate in the interaction.
On the other hand for ε close to unity the effective kink mass
can slightly exceed its total rest mass m0 = 8, which is related
to some deformation of the kink profile during the interaction
process. First we compare the dynamics of the centre of mass
of the kink following from the field model with the position of
the kink predicted by the effective model (45). In Fig. 12 we
show comparison of the trajectories for initial velocities u0 =

0.4100 in Fig. 12.A and u0 = 0.5400 in Fig. 12.B. The size of the
inhomogeneity is L = 10, initial position is x0 = −50 and ε = 0.2.
Compatibility for speeds below the critical value is striking. On
the other hand above the critical velocity the compatibility is only
qualitative. The kink speed in the interaction region is smaller
in the effective model than in the original field model. We also
performed the systematic studies of the last model (45) in order
to obtain the critical velocity. If we take into account the active
kink mass then we obtain an excellent agreement of the effective
model with the exact field equation (see Fig. 13). In order to check
whether a similar problem is present in other effective popular
descriptions we study, in the subsequent subsections, the same
regime (i.e. for L > 4) of the considered system (24).
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Fig. 12. Comparison of the kink movement obtained on the ground of the field model (black line) and on the ground of the effective model (45) (green line). The
parameters of the plot as follows ε = 0.2, x0 = −50, L = 10 and u0 = 0.4100 in fig. A or u0 = 0.5400 in fig. B. In both plots µ = 4.1076 and λ = 2.9385. The grey
region represents the interaction area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. The dependence of the critical speed uc on the barrier height ε for
L = 10 with the active kink mass taken into account. In this plot µ = 4.1076
and λ = 2.9385. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

4.2. Method II - perturbation scheme

The second method relies on the perturbation scheme that
was proposed in the article [52]. According to this approach,
one has to separate in the field equation (1) part εf (φ) which is
responsible for derogation from the sine–Gordon model

∂2t φ − ∂2x φ + sinφ = ε∂x(g(x)∂xφ) = εf (φ). (46)

The effective equations of motion of the kink in this case are as
follows (see [52])

du
dt

= −
1
4
(1 − u2)

∫
+∞

−∞

dx εf (φ(ξ )) sechξ , (47)

dX
dt

= u −
1
4
u
√
1 − u2

∫
+∞

−∞

dx εf (φ(ξ )) ξ sechξ , (48)

where ξ =
x−X√
1−v2

, and X = x0(t) +
∫
0
tdt ′u(t ′). We calculate the

integrals that define the right sides of the above equations. In the
first integral

J1 =

∫
+∞

−∞

dx f (φ(ξ )) sechξ, (49)

we introduce the explicit form of function f (from Eq. (46)) and
make differentiation

J1 =

∫
+∞

−∞

dx ∂xg(x) ∂xφ sechξ +

∫
+∞

−∞

dx g(x) ∂2x φ sechξ . (50)

The first term of this integral can be easily integrated because
g(x) = Θ(x) − Θ(L − x) and ∂xg(x) = δ(x) − δ(L − x). Moreover,
in this term ∂xφ = 2γ sechξ and so

J1 = 2γ (sech2ξ0 − sech2ξL) +

∫ L

0
dx ∂2x φ sechξ, (51)

where ξL = γ (L − X) and ξ0 = γ (−X). The function that is under
the integral we transform as follows

∂2x φ sechξ =
1
2
∂2x φ ∂ξφ =

1
2
γ 2∂2ξ φ ∂ξφ =

1
4
γ 2∂ξ

(
∂ξφ

)2
,

where we used relation 2 sechξ = ∂ξφ. Now the integral takes
the form

J1 = 2γ (sech2ξ0 − sech2ξL) +
1
4
γ

∫ ξL

ξ0

dξ ∂ξ
(
∂ξφ

)2
, (52)

and therefore we have

J1 = 2γ (sech2ξ0 − sech2ξL) +
1
4
γ

[(
∂ξφ(ξL)

)2
−

(
∂ξφ(ξ0)

)2]
. (53)

After simplification of two terms the integral reduces to the form

J1 = γ (sech2ξ0 − sech2ξL). (54)

The second integral is quite similar to the first one

J2 =

∫
+∞

−∞

dx f (φ(ξ )) ξ sechξ =

∫
+∞

−∞

dx ∂x(g(x)∂xφ) ξ sechξ .

(55)

We repeat the steps made during the calculation of the first
integral and obtain

J2 = 2γ (ξ0 sech2ξ0 − ξL sech2ξL) +

∫ L

0
dx ∂2x φ ξ sechξ . (56)

The same steps as we performed between equations (51) and (52)
lead to expression

J2 = 2γ (ξ0 sech2ξ0 − ξL sech2ξL) +
1
4
γ

∫ ξL

ξ0

dξ ξ ∂ξ
(
∂ξφ

)2
. (57)

The function that is integrated we transform as follows

ξ ∂ξ
(
∂ξφ

)2
= ∂ξ

(
ξ

(
∂ξφ

)2)
−

(
∂ξφ

)2
.

After performing integration in the first part of the integral we
obtain

J2 = 2γ (ξ0 sech2ξ0 − ξL sech2ξL)

+
1
4
γ

(
ξL

(
∂ξφ(ξL)

)2
− ξ0

(
∂ξφ(ξ0)

)2)
−

1
4
γ

∫ ξL

ξ0

dξ
(
∂ξφ

)2
.

(58)
8
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Fig. 14. Comparison of the trajectories that follow from the field model (black line) with the trajectory obtained on the ground of the effective model (61)–(62)
(blue line). The parameters of the plot are as follows L = 10, ε = 0.2, x0 = −50 and u0 = 0.41 in fig. A and u0 = 0.54 in fig. B. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Subtraction of the first two terms leads to

J2 = γ (ξ0 sech2ξ0 − ξL sech2ξL) − γ

∫ ξL

ξ0

dξ sech2ξ . (59)

Finally, after integration of the last term we obtain

J2 = γ (ξ0 sech2ξ0 − ξL sech2ξL) − γ (tanh ξL − tanh ξ0) . (60)

The effective equations of motion of the kink are obtained by
implementing integrals (54) and (60) into Eqs. (47)–(48). In the
model considered by us the approximate equations of motion for
X and u are
du
dt

=
1
4
ε
√
1 − u2

(
sech2 L − X

√
1 − u2

− sech2 X
√
1 − u2

)
, (61)

dX
dt

= u +
1
4
εu

(
tanh

X
√
1 − u2

+ tanh
L − X

√
1 − u2

+ V (X)
)
. (62)

Here the auxiliary function V has the form

V (X) =
X

√
1 − u2

sech2 X
√
1 − u2

+
L − X

√
1 − u2

sech2 L − X
√
1 − u2

.

Having the system of equations (61)–(62) that provide effective
description of the field model we may compare the trajectories
that follow from both descriptions. In Fig. 14 the motion of the
centre of mass of the kink following from the field model is
compared with the kink position obtained from an approximate
description. In the figure we consider the kink that starts its
evolution at x0 = −50. The parameters that describe the inho-
mogeneity are ε = 0.2 and L = 10. Below the critical velocity
(for u0 = 0.41) we observe considerable deviation from the field
model. For speeds exceeding the critical velocity (for u0 = 0.54)
the situation is even worse. This time the results that follow
from the approximate model defined by (61)–(62) significantly
underestimate the values of the field model (24). The results of
all simulations are collected in Fig. 15 where the critical velocity
of the model (61)–(62) is compared with results of the original
field model. In the plot we take ε = 0.2, L = 10 and the initial
kink position x0 = 50.

4.3. Method III - projection onto the zero mode

The third approach is motivated by the method of projection
onto the zero mode of the system. This approach was applied
to the systems like the φ4 model [53,54]. The method relies on
projection of the equation of motion onto the zero mode, present
in the linear spectra of excitations of the kink in the homogeneous

Fig. 15. The critical velocity for L = 10. The initial position of the kink is taken
x0 = −50. The black points represent numerical results obtained from the field
model (24). The blue line represents the results of the effective dynamical model
(61)–(62). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

model (26). In this technique one introduces the kink ansatz
(34)–(35) into the field equation

∂2t φ − ∂2x φ + sinφ − ε∂xg(x)∂xφ − εg(x)∂2x φ = 0. (63)

The resulting equation is a base for obtaining the effective equa-
tion satisfied by the collective coordinate(
ξ̈ − ξ ′′

)
∂ξφ +

(
ξ̇ 2 − ξ ′2

)
∂2ξ φ + sinφ =

ε(∂x g) ξ ′ ∂ξφ + εg
(
ξ ′′∂ξφ + ξ ′2∂2ξ φ

)
.

(64)

Here we denote the derivative with respect to the space variable
by prime and the derivative with respect to time is represented by
a dot. For the function ξ (t, x) defined by Eq. (35) we have ξ ′

= γ ,
ξ ′′

= 0 and therefore the above equation is reduced as follows

ξ̈ ∂ξφ +
(
ξ̇ 2 − γ 2) ∂2ξ φ + sinφ = ε(∂x g) γ ∂ξφ + εg γ 2∂2ξ φ. (65)

In order to simplify sinφ we use equation (∂ξφ)2 = 2V (φ) which
in the model considered by us has the form 4 sech2ξ = 2(1 −

cosφ). From this formula one can calculate sinφ = −2 sechξ
tanh ξ and therefore Eq. (65) is simplified to the form

ξ̈ sechξ +
(
γ 2

− ξ̇ 2 − 1
)
sechξ tanh ξ

= εγ ∂xg sechξ − εg γ 2 sechξ tanh ξ . (66)
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Next, we calculate the derivatives of the function ξ (t, x) with
respect to time i.e. ξ̇ =

γ̇

γ
ξ − γ u, and ξ̈ =

γ̈

γ
ξ − 2γ̇ u − γ u̇,

where ẋ0 = u. In particular the formula for Lorentz factor γ =

1/
√
1 − u2 helps to remove the terms γ 2

− 1 − γ 2u2
= 0.

Now Eq. (66) can be transformed as follows(
γ̈

γ
ξ − (2γ̇ u + γ u̇)

)
sechξ +

(
2γ̇ uξ −

(
γ̇

γ

)2
ξ 2

)
sechξ tanh ξ

= εγ ∂xg sechξ − εg γ 2 sechξ tanh ξ .

(67)

In order to obtain the equation of motion for the kink position
we remove the space variable by projection of Eq. (67) onto the
zero mode, which is proportional to the gradient of the kink
i.e. ∂xφ ∼ sechξ

Eq = 0 H⇒ ⟨sechξ, Eq⟩ ≡

∫
∞

−∞

dx sechξ Eq = 0, (68)

where Eq denotes Eq. (67). In this step we calculate the appropri-
ate integrals. In particular we use nonzero integrals∫

∞

−∞

dx sech2ξ =
2
γ

,

∫
∞

−∞

dx ξ sech2ξ tanh ξ =
1
γ
,

in order to simplify Eq. (68) to the form

u̇ +
γ̇

γ
u = −

1
2
εγ

∫
+∞

−∞

dx∂xg sech2ξ

+
1
2
εγ 2

∫
+∞

−∞

dxg sech2ξ tanh ξ . (69)

Next we use the explicit form of the function g and therefore we
obtain the following equation

u̇ +
γ̇

γ
u = −

1
2
εγ

(
sech2ξ0 − sech2ξL

)
+

1
2
εγ 2

∫ L

0
dx sech2ξ tanh ξ . (70)

We calculate the last integral

u̇ +
γ̇

γ
u = −

1
2
εγ

(
sech2ξ0 − sech2ξL

)
+

1
2
εγ 2 1

2γ

(
sech2ξ0 − sech2ξL

)
, (71)

and then subtract similar terms obtaining the equation that con-
tains both the speed derivatives and the derivatives of the Lorentz
factor

u̇ +
γ̇

γ
u =

1
2
εγ

(
sech2ξL − sech2ξ0

)
. (72)

Then we simplify the left hand side of this equation by calculating
the term that contains the time derivative of the Lorentz factor
γ̇

γ
= γ 2uu̇.

The final result of this procedure is the system of equations

du
dt

=
1
4
ε
√
1 − u2

(
sech2 L − x0

√
1 − u2

− sech2 x0
√
1 − u2

)
,

dx0
dt

= u . (73)

Let us notice that the system (73) is identical to the previously
obtained system of Eqs. (43). The curve uc = uc(ε) that follows
from the numerical solution of the last equation was previously
presented, for example, in Figs. 7–9. The comments concerning
Figs. 7–9 also apply to the model III.

4.4. Method IV - projection onto the energy density

In the last method we propose projection of Eq. (67) onto the
energy density of the kink. Due to the fact that the energy density
ρ is proportional to the ρ ∼ sech2ξ it is better localized in the
vicinity of the kink position than the zero mode. By analogy to the
procedure of fitting the active mass we propose to cut off a larger
part of the kink mass because projection onto the zero mode still
underestimates the active mass participating in the interaction
process. Now we repeat the projection procedure described in the
previous section but with zero mode replaced with the energy
density

Eq = 0 H⇒ ⟨sech2ξ, Eq⟩ ≡

∫
∞

−∞

dx sech2ξ Eq = 0. (74)

This procedure is motivated by the fact that the last projection
cuts out an area better focused around the maximum energy
density of the kink. The projection of this type removes part of
the kink configuration that does not take part in the interaction
process. Due to the projection, only the terms for which the
relevant integrals do not disappear remain in the equation. In the
case considered in this part, only the integrals∫

∞

−∞

dx sech3ξ =
1
γ

π

2
,

∫
∞

−∞

dx ξ sech3ξ tanh ξ =
1
γ

π

6

are non-zero and therefore equation (74) reduces to the form

u̇ +
4
3
γ̇

γ
u = −

2
π
εγ

∫
+∞

−∞

dx ∂xg sech3ξ

+
2
π
εγ 2

∫
+∞

−∞

dxg sech3ξ tanh ξ . (75)

The use of the function g and its derivative allows us to find
the first integral from the right side of the above equation and
simplify the second one

u̇ +
4
3
γ̇

γ
u = −

2
π
εγ

(
sech3ξ0 − sech3ξL

)
+

2
π
εγ 2

∫ L

0
dx sech3ξ tanh ξ . (76)

The last integral can be calculated exactly and therefore we have

u̇ +
4
3
γ̇

γ
u = −

2
π
εγ

(
sech3ξ0 − sech3ξL

)
+

2
π
εγ 2 1

3γ

(
sech3ξ0 − sech3ξL

)
. (77)

Subtraction of similar terms leads to the equation

u̇ +
4
3
γ̇

γ
u =

4
3π

εγ
(
sech3ξL − sech3ξ0

)
. (78)

Next we remove the time derivative of the Lorentz factor γ̇ /γ =

γ 2uu̇. The resulting system of equations has the form(
3 + u2) du

dt
=

4
π
ε
√
1 − u2

(
sech2 L − x0

√
1 − u2

− sech2 x0
√
1 − u2

)
,

dx0
dt

= u. (79)

Fig. 16 presents exemplary trajectories of the kink motion that
follow from the effective model (79) compared with the trajectory
of the centre of kink mass in the field model. In both approaches
the parameters of the barrier are fixed at ε = 0.2 and L = 10. The
initial position of the kink is x0 = −50 its velocity is u0 = 0.4100
in fig. A and u0 = 0.5400 in fig. B. For initial velocities of the
kink smaller than the critical value both trajectories are almost
identical. If the initial speed exceeds critical velocity then we
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Fig. 16. The trajectory of the centre of kink mass obtained from the field model (24) (black line) compared with the trajectory of the kink obtained from the
effective model (79) (red line). The initial position of the kink is x0 = −50 and the parameters that describe barrier are ε = 0.2 and L = 10. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. The critical velocity for L = 10. The results of the field model (24)
are represented by the black points. The red line represents the result of the
effective dynamical model (79). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

observe only qualitative agreement. The results of simulations are
collected in Fig. 17. In the plot the spatial size of the inhomo-
geneity is L = 10 and the initial position of the kink x0 = −50.
In this figure the outcome of the last equation is compared with
the results of the field model (24). We immediately notice the
reasonable agreement of the effective model with the field model
for small ε. For larger ε we observe an overestimation of the
values of uc .

5. Remarks

In order to better evaluate the validity of the methods we
compare the representative results. In Fig. 18 we compare tra-
jectories in the case of inhomogeneity parameters ε = 0.2 and
L = 10. The initial position of the kink is x0 = −50. The
grey region of the figures represents the position of the barrier.
The black continuous line represents the trajectory of the centre
of mass of the kink. The first and third methods produce the
results represented by the green line while the results of second
method are represented by the blue one. The red line represents
the trajectory obtained in the fourth method. In Fig. 18 A the
initial kink speed is below the critical velocity u0 = 0.4100.
Comparison of the methods clearly shows excellent agreement
between centre of mass position obtained from the field model
and the kink position obtained in the framework of the effective
Model IV. For speeds exceeding the critical velocity u0 = 0.5400
the fourth model shows only quantitative agreement.

In Fig. 19 we also present the results collected for critical
velocity for small values of the barrier height i.e. for small val-
ues of parameter ε. In simulations the initial kink position was
x0 = −50. The last method (Method IV) produces the results,
represented by the red line, which are in good agreement with
the exact result (represented by the black dots). In the considered
regime three methods (Method I, II and III) have the same level
of precision i.e. all these methods significantly underestimate the
real values of the critical velocity.

Summing up, we proposed two approaches. In the first ap-
proach the Methods I, II and III can be corrected by taking into
account the active mass of the kink instead of its total mass. The
result of this approach was tested on Method I and it perfectly
reproduces the exact result. The second approach (Method IV) is
based on projection onto the energy density. The outcome of this
approach is in reasonable agreement with the exact result. The
advantage of this method lies in the fact that it does not need
additional parameter estimation. We also tested models with
more degrees of freedom (see Appendix B). Surprisingly, these
models do not improve the precision of the description of the
system under consideration. We would like to underline that the
proper estimation of the critical velocity is crucial for establishing
the correct relation between parameters of the inhomogeneity
and the critical current in the system (1) enriched with the
dissipation term and the bias current. The critical current is a
quantity directly measured in experimental systems containing
Josephson junctions.

The other issue is an influence of the inhomogeneity repre-
sented by the function F on the linear excitations of the consid-
ered model. The sine Gordon equation in the linear approxima-
tion
1
c̄2
∂2t φ − ∂2x φ +

1
λ2J
φ = 0,

possess wave solutions that satisfy the following dispersion rela-
tion

ω = c̄

√
k2 +

1
λ2J

.

In the model considered by us (if we assume F = const) the
linearized equation
1
c̄2
∂2t φ − F∂2x φ +

1
λ2J
φ = 0,

is satisfied by the plasmons that satisfy a modified relation of
dispersion

ω = c̄

√
Fk2 +

1
λ2J
.
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Fig. 18. Comparison of the trajectories obtained for different methods with the trajectory of the centre of mass of the kink obtained on the ground of field model
(black line). In the plots ε = 0.2, L = 10, x0 = −50. In figure A the initial speed is u0 = 0.4100 and in figure B u0 = 0.5400. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Knowledge of these relations allows for estimation of the refrac-
tive index for the considered system. By definition it is related to
the phase velocity uph

n =
c̄
uph

=
c̄k
ω
.

The refractive index of the system with F ≠ 1 in relation to the
refractive index of the system with F = 1 is as follows

nF = n

√ k2 +
1
λ2J

Fk2 +
1
λ2J

= n

√ 1 +
1

4π2
λ2

λ2J

F +
1

4π2
λ2

λ2J

.

In particular for sufficiently short wave excitations i.e. λ ≪ λJ we
can neglect the second terms in the nominator and denominator
and we obtain

nF ≈ n
1

√
F

≈ n(1 −
1
2
εg) ,

where we used the formula F = 1 + εg . The presence of
the potential barrier F > 1 lowers the value of the refraction
index in comparison to the system with F = 1. If nF < 1
plane waves can reflect from the barrier. The situation resembles
reflection of the radio waves from the ionosphere. We do not
consider the opposite regime i.e. λ ≫ λJ , because in the case of
the typical Josephson junction it corresponds to the size of the
whole junction. We see that the presence of the barrier affects the
motion of the kink but it also affects the propagation of plasmons
in the system.

The other issue that deserves comment is quantum behaviour
of the considered system. Theoretical and experimental research
conducted on Josephson junctions suggest that at sufficiently
low temperatures (below 100mK ) the fluctuations in the junc-
tion change their character from thermal (classical) to quantum
[57,58]. The nature of fluctuations is crucial for the mechanism
of escape to a finite voltage state. In particular, a position of
Switching Current Distribution (SCD) peak in the case of thermal
activation is temperature dependent. On the other hand in the
case of Macroscopic Quantum Tunnelling (MQT) the position of
SCD peaks saturate at low temperatures. It seems that in spite
of the relatively big size of the junction at low temperatures it
behaves as a quantum system. In particular the kink, in spite of
its large size, that is on the level of the Josephson penetration
depth, has a relatively small mass. Let us, for a moment, abandon
the convention c̄ = 1. The fluxon rest mass, for conventional
superconductors, can be estimated as follows m0 ∼ 10−2me ÷

10−3me (for width of the junction of order 1 µm, me is electron
mass). It seems that at very low temperatures one can expect
tunnelling of the kink through a barrier. Although, this possibility

Fig. 19. The effective models compared with the field model for L = 10
and small ε. The critical velocity that follows from the first and third model
is represented by the green line. The blue line represents the results of the
second model. The results of fourth model are represented by the red line. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

deserves further studies in this article we concentrated on purely
classical behaviour.
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Appendix A

Curved coordinates in the vicinity of the central curve play a
crucial role for considerations of Section 2. The coordinates are
stretched around a curve centrally located in the dielectric layer.
First we introduce vector field X⃗ = X⃗(s) parameterized by the
space parameter s that describes the position of the curve in the
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Fig. 20. Frenet frame and the plane curve located on the surface.

three dimensional space. The relation between Cartesian and new
curved coordinates is given by the formula

x⃗ = X⃗(s) + ρ b⃗(s) + u n⃗(s), (80)

where u and ρ are coordinates that parameterize normal and bi-
normal directions to the curve. Both normal and binormal vectors
n⃗ and b⃗ are orthogonal to the tangent vector to the curve t⃗ = ∂sX⃗ .
All those vectors form an orthonormal frame called the Frenet
frame

t⃗ · n⃗ = t⃗ · b⃗ = b⃗ · n⃗ = 0, t⃗ 2
= n⃗ 2

= b⃗ 2
= 1. (81)

The formula (80) is an implicit relationship between Cartesian
(xi) = (x1, x2, x3) = (x, y, z) and curved coordinates (σ a) =

(σ 1, σ 2, σ 3) = (s, ρ, u). The change of the vectors belonging
to the Frenet frame when one moves along the curve X⃗(s) is
described by the Frenet–Serret formulas

∂s t⃗ = Kn⃗, (82)

∂sn⃗ = −K t⃗ + ωb⃗, (83)

∂sb⃗ = −ωn⃗, (84)

where the coefficients K (s) and ω(s) represent curvature and the
torsion of the curve. In the case of the plane curve (assumed
in this article) the torsion disappears ω = 0 and therefore the
formulas simplify significantly

∂s t⃗ = Kn⃗, ∂sn⃗ = −K t⃗, ∂sb⃗ = 0. (85)

In the calculus we shall need the metric in the curved coordinates

gab =
∂xi

∂σ a

∂xj

∂σ b ηij = ∂ax⃗ · ∂bx⃗, (86)

where (ηij) = diag(1, 1, 1) is a metric in Cartesian coordinates.
The derivatives of vector x⃗ can be calculated based on formula
(80) and simplified Frenet–Serret formulas (85)

∂sx⃗ = t⃗ + u ∂sn⃗ + ρ ∂sb⃗ = (1 − u K ) t⃗ = G t⃗, (87)

where G = (1 − u K ) and

∂ux⃗ = n⃗, ∂ρ x⃗ = b⃗. (88)

By inserting the obtained derivatives (87)–(88) into the expres-
sion on the metric (86) and using the orthonormality condi-
tions (81), we get components of the metric tensor in curved
coordinates

gss = G2, guu = 1, gρρ = 1, gsu = 0, gsρ = 0, guρ = 0.

(89)

In the orthogonal system of coordinates the differential operators
are solely determined by diagonal components of the metric

Fig. 21. Comparison of one variable models with two variables model of
Appendix B. The figure concerns ε = 0.2 and L = 10. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

tensor. In the case of gradient we have

gradϕ = ∇ϕ =
1

√
gss

(∂sϕ) t⃗ +
1

√gρρ
(∂ρϕ) b⃗ +

1
√
guu

(∂uϕ) n⃗. (90)

In coordinates defined in the vicinity of the central curve gradient
operator simplifies to the form

gradϕ = ∇ϕ =
1
G

(∂sϕ) t⃗ + (∂ρϕ) b⃗ + (∂uϕ) n⃗. (91)

For curl operator we have

curl H⃗ =
1

√
guugρρ

[
∂ρ(

√
guuHu) − ∂u(

√
gρρHρ)

]
t⃗+ (92)

1
√
guugss

[
∂u(

√
gssHs) − ∂s(

√
guuHu)

]
b⃗+

1
√gssgρρ

[
∂s(

√
gρρHρ) − ∂ρ(

√
gssHs)

]
n⃗.

In the coordinates used by us this operator simplifies to the form

curl H⃗ =
[
∂ρHu − ∂uHρ

]
t⃗ +

1
G
[∂u(GHs) − ∂sHu] b⃗

+
1
G

[
∂sHρ − ∂ρ(GHs)

]
n⃗. (93)

Appendix B

The model described in this paper can be also studied in the
framework of two dimensional ‘‘moduli space’’. In order to obtain
this description we start from the field lagrangian

L =

∫
+∞

−∞

dx
[
1
2
(∂tφ)2 −

1
2
F(x)(∂xφ)2 − (1 − cosφ)

]
. (94)

We introduce to the above formula the kink ansatz (34) where
ξ (t, x) = γ (t)(x − x0(t)) but this time we treat x0(t) and γ (t) as
two independent dynamical variables

L = 2
∫

+∞

−∞

dx
[
ξ̇ 2 − F ξ́ 2 − 1

]
sech2ξ . (95)

We use F defined by Eq. (33). Moreover we use the space ξ́ = γ

and time ξ̇ = ξ γ̇ /γ − γ ẋ0 derivatives of auxiliary function ξ

L = 2
∫

+∞

−∞

dx

[(
ξ
γ̇

γ
− γ ẋ0

)2

− γ 2
− 1 − εγ g

]
sech2ξ . (96)
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Fig. 22. Kink position of model IV (red line) compared with position of the centre of mass of the kink obtained on the ground of field model (black line). The
parameters of the plot are as follows L = 0.2 and ε = 5. The initial position of the kink is taken x0 = −50 and the initial velocities u0 = 0.59 in fig. A, u0 = 0.65 in
fig. B. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Next, we do the integration for the variable ξ and rescale an
effective lagrangian by a factor of 8

L =
1
2
γ ẋ20 +

π2

24
1
γ 3 γ̇

2
−

1
2

(
γ +

1
γ

)
−

1
4
ε (tanh γ (L − x0) + tanh γ x0) . (97)

The Euler–Lagrange equations for this lagrangian have a much
more extensive form

u̇ +
γ̇

γ
u =

1
4
ε
[
sech2γ (L − x0) − sech2γ x0

]
(98)

and
π2

12
1
γ 3 γ̈ −

π2

4
1
γ 4 γ̇

2
=

1
2
ẋ0 +

π2

8
1
γ 4 γ̇

2
+

1
2

1
γ 2 −

1
2

−
1
4
ε
[
(L − x0)sech2γ (L − x0) + x0sech2γ x0

] (99)

but its predictive power (especially for higher speeds) is compa-
rable with previous methods. The comparison of results of the
two variable model with other models described in this article
for ε = 0.2 and L = 10 are presented in Fig. 21. One can see
that in spite of the complications of the last model, the results
of the model are not better than simple models considered in
Section 4. Moreover, we also considered how the addition of
localized impurity modes to the kink affects the estimation of
critical velocity. We considered an ansatz with four dynamical
variables γ (t), x0(t), A(t) and B(t)

φ(t, x) = 4 arctan
(
eγ (t)(x−x0(t))

)
+ A(t)ϕ1(x) + B(t)ϕ2(x), (100)

where localized functions ϕ1(x) = sech(x) and ϕ2(x) = sech(L−x)
have been associated with the ends of the barrier. The resulting
effective lagrangian L = L(γ (t), x0(t), A(t), B(t)) in spite of its
complication (even in a small velocity regime) provides a far from
satisfactory outcome. The results of this approach are less precise
than any of the one and two variable models.

Appendix C

Frequently the Josephson junction is populated by inhomo-
geneities caused by local change of the critical current density at
some specific points of the system. Their presence is described by
additional terms in the potential −εδ(x − ximp)(1 − cosφ), where
ximp indicates position of the impurity [52,59,60]. If ε < 0 then
such potential describes microshort. On the other hand for ε > 0
it describes microresister. The latter plays a role of a pinning
potential for the fluxon.

One might ask whether (by analogy) in formula (25) it is
possible to replace the product εg(x) by the delta function. Direct

implementation of this idea is impossible because of the necessity
to differentiate the delta function in the equation of motion (25).
On the other hand, the delta function can be represented as the
limit of a sequence of Gaussian, bell, or rectangular Fε,L(x) =

ε(θ (x)−θ (x−L)) functions [61]. In the last case the delta function
is recovered in the limit ε → ∞, L → 0 and ε · L = 1. In order to
reproduce some results in this regime we have to go far beyond
the small ε regime. We provide exemplary result for L = 0.2 and
ε = 5. In Fig. 22 we compare the trajectories of the centre of mass
of the kink that follows from the field model and the position
of the kink obtained on the ground of the effective model IV. As
would be expected, if ε increases, the model gradually loses its
predictive power.
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a b s t r a c t

The impact of thermal noise on kink motion through the curved region of the long Josephson junction
is studied. On the basis of the Fokker–Planck equation the analytical formula that describes the
probability of transmission of the kink over the potential barrier is proposed. The analytical results are
compared with the simulations based on the field model. It has been numerically shown that above
one Kelvin the probabilities of crossing the barrier are correctly described by the formula proposed in
the paper.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a significant increase of interest in the con-
struction of a variety of appliances that use superconducting
elements is observed. Among the devices manufactured on the
basis of superconductors, Josephson junctions occupy a promi-
nent position. The effect of supercurrent flow without any volt-
age applied was initially predicted by Brian D. Josephson [1,2].
A device known as a Josephson junction consists of two su-
perconductors coupled by some weak link. The weak link can
be made of a thin insulating barrier (in S-I-S junctions), nor-
mal non-superconducting metal (in S-N-S junctions), or have a
form of constriction that weakens the superconductivity at the
point of contact (in S-s-S junctions). The effect was experimen-
tally confirmed for the first time by Philip Anderson and John
Rowell [3].

Presently there are a variety of devices which contain Joseph-
son junctions in their design [4,5]. They can be classified into
three groups. In the first group one can include antennas, ampli-
fiers, filters, bolometers, single photon detectors, magnetometers
and many others. The second group consists of digital electronic
appliances like digital-to-analogue and analogue-to-digital con-
verters and rapid single flux quantum computing elements. The
third group consists of quantum computing devices.

In the context of future practical applications of the Josephson
junction it is natural to look for superconducting materials with
high critical temperatures. Presently at normal pressure, it is

∗ Corresponding author.
E-mail address: tomasz.dobrowolski@up.krakow.pl (T. Dobrowolski).

possible to achieve a state of superconductivity at relatively high
temperatures in the so-called high-temperature superconduc-
tors [6]. An example of such materials is cuprate-perovskite ce-
ramic which has a critical temperature above 90 K. Nowadays one
of the highest-temperature superconductors is HgBa2Ca2Cu3O8+δ

with a critical temperature exceeding 133 K [7]. In particular,
exceeding the temperature 77 K allows the use of liquid nitrogen,
on an industrial scale, in cooling systems of superconducting
devices.

The Josephson junction properties required for optimal per-
formance of the appropriate devices can be planned at the de-
sign stage of the equipment that uses them. Between multiple
approaches directed at obtaining requested properties of Joseph-
son junctions, shape engineering plays a significant role. In this
approach, particular modifications of the junction shape are pro-
posed in order to obtain their required properties. For example,
in the article [8] the authors proposed a device that consists of a
junction with an exponentially tapered width, decreasing toward
the load. In this device the junction is preceded by an idle region,
where the oxide layer is thicker, preventing the tunnelling of
Cooper pairs.

On the other hand, in the heart-shaped annular junction two
classical vortex states can be prepared, corresponding to two
minima of the potential [9]. The bias current across the junction
is used to slant the potential. The strength and direction of the
applied external magnetic field plays the role of the control pa-
rameters. For example, all these parameters can be used in order
to modify the barrier height. The heart-shaped long Josephson
junction placed in an in-plane external magnetic field was also
considered in article [10]. Based on this geometry the authors

https://doi.org/10.1016/j.physd.2023.133649
0167-2789/© 2023 Elsevier B.V. All rights reserved.
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Fig. 1. Examples of different junctions shape (a) T -junctions (top left and right),
(b) Y-junction and (c) sigma junction.

designed a classical system with two ground states. At suffi-
ciently low temperatures, this structure is expected to behave as
a quantum two-state system.

The other opportunity to modify properties of a junction is
formation of the T-shaped geometry [11]. The above mentioned
appliance consists of two perpendicular Josephson T-Lines form-
ing a T junction. The particular effect present in the device is the
creation of a new vortex when an original vortex, moving along
the main Josephson T-line, is passing the T junction. The new
vortex created at the T junction begins its motion in the direction
perpendicular to the main Josephson T-line. The creation of a new
vortex is substantially dependent on the energy of the original
vortex. If the kinetic energy of the original vortex is too small then
the T junction acts as a barrier and the original vortex is reflected
without creation of a new vortex (the ability of introducing new
vortices into the system is the reason why systems of this type
are called pumps).

A similar, to some degree, proposal is sigma-pump. The main
advantage of this system is the lack of the barrier. Instead, the
Josephson transmission line is connected with the ring smoothly
through the Y junction (Fig. 1). In this pump a nucleation bar-
rier is absent. Moreover, the nucleation energy is gathered by
the trapped fluxon during its motion in the potential associated
with increasing width. A similar system is considered in articles
[12,13].

An interesting possibility is an annular junction delimited by
two closely spaced confocal ellipses that is characterized by a
periodically modulated width [14,15]. This spatial dependence, in
turn, produces a periodic potential that interchangeably attracts
and repels the fluxons. In this particular junction, the double-well
potential, experienced by an individual fluxon, is produced by an
intrinsic non-uniform width.

If the thickness of the dielectric layer in the junction is position
dependent then the kink experiences the effective potential orig-
inating in heterogeneities present in the system [16]. The thresh-
old value of the bias current in this case is strictly determined by
the parameters of the system.

The effects of arbitrary curvature on fluxon motion in curved
Josephson junctions were studied in articles [17–21] with curva-
tures playing the role of potential barriers for kink motion. In
particular in [22] the different simplified effective descriptions
were compared in order to choose the most suitable for the
considered system.

On the other hand, it is also important that physical systems
such as the Josephson junction are subject to thermal noise.
The impact of the Gaussian white noise on the switching of
the system to the voltage state has been studied in the article
[23]. The authors, on the base of Kramers theory [24], considered

thermally activated switching and showed the differences in the
behaviour of the short and long Josephson junctions. Moreover,
the switching of the system from the zero-voltage state under
the influence of Levy noise has been studied in [25]. The effects
of white and coloured noise on the dynamics of the short and
long Josephson junctions were considered additionally in the ar-
ticle [26]. The authors noted the existence of resonant activation
and noise enhanced stability. The results obtained throw light
upon the role played by different noise sources in the dynamics
of superconductive devices.

The dynamics of a long Josephson junction in the framework
of the sine–Gordon model with a white noise source have been
studied in article [27]. The authors demonstrated that for homo-
geneous bias current distribution the mean escape time tends to a
constant, while for inhomogeneous current distribution the mean
escape time quickly decreases after approaching a few Josephson
lengths. The problem of the temperature dependence of the mean
escape time for annular and linear system was addressed in
the paper [28]. The authors demonstrated that the fluctuational
stability of the linear structure is significantly lower than for the
annular one.

However, the heat transport in thermally-biased long Joseph-
son tunnel junctions is discussed in a series of articles. For exam-
ple, in article [29] it was demonstrated that the phase-dependent
component of the heat current through the junction displays a
coherent diffraction. Moreover, it was shown that the junction
warms up in the position occupied by the solitons. This obser-
vation led to the idea of a superconducting thermal router in
which the thermal transport can be locally mastered through
solitons [30]. The position of the solitons would change due to the
applied magnetic field and the bias current. The soliton-induced
thermal effects when the soliton speed approaches the Swihart
velocity were considered. In addition, the appropriate material
selection of superconductors forming the junction to observe fast
thermal effects was discussed in [31]. The fast solitonic Josephson
heat oscillator, whose frequency is in tune with the oscillation
frequency of the magnetic drive, and its application as a tunable
thermal source for nanoscale heat engines and coherent thermal
machines were discussed in [32]. The same system is studied
in [33], where the authors observe that, starting from a homo-
geneous system, they finally observe some inhomogeneously-
distributed temperature profiles.

In the present article we study the curved system with bias
current and the quasi-particle dissipation taken into account.
Moreover this paper is aimed at studying the effects of nonzero
temperature of the system on the process of penetration of the
potential barrier through the kink. We present the appropriate
analytical results and compare them with the results of simula-
tions performed in the field model. The analytical approximations
rely mainly on the projection onto energy density method.

2. Kink in curved system

We consider the kink motion in the sine–Gordon model with
position dependent dispersive term

∂2
t φ + α∂tφ − ∂x(F(x)∂xφ) + sinφ = −Γ . (1)

In the context of the Josephson junction the distances in the
above equation are measured in the units of Josephson penetra-
tion depth, the time is measured in units of the inverse plasma
frequency, α represents the dissipation caused by the quasi-
particle currents and Γ is bias current. The function F(x) contains
information about curvature of the junction. The physical mo-
tivation for description of curvature effects in the framework
of this model was described in detail in the articles [19,22]. In
those papers it was shown that this modification appears in the
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description of a curved Josephson junction. The kink solution in
this physical situation represents the fluxon propagating along
the long junction.

Reduction of the field model (Eq. (1)) to a single mechanical
degree of freedom is performed in the framework described in
article [22], thanks to the procedure called projection onto energy
density. In order to realize this scheme we introduce into field
equation the kink like ansatz

φ(t, x) = 4 arctan(eξ (t,x)),

where in nonrelativistic limit the function ξ (t, x) is approximated
as follows

ξ = x − x0(t).

Here x0(t) denotes a position of the kink. The kink-like ansatz
is the solution of the sine–Gordon model only in the case of
an unperturbed system. For further convenience we introduce
auxiliary function g(x)

F(x) = 1 + εg(x),

where ε is a dimensionless parameter that controls the magni-
tude of heterogeneity. We consider the deformation of the system
localized between x = xi and x = xf . To be precise we assume the
function g(x) in the form

g(x) = θ (x − xi) − θ (x − xf ),

where θ (x) is Heaviside step function. The geometry of this junc-
tion is described in Appendix A. In the context of the curved junc-
tion the form of this function means constant (nonzero) curvature
located between xi and xf . According to the method presented in
the article [22], the field equation (1) can be transformed to the
form

u̇ sechξ + u2 sechξ tanh ξ + α u sechξ = (2)

−ε ∂xg(x) sechξ + ε g(x) sechξ tanh ξ +
1
2

Γ ,

where u denotes the kink speed i.e. u ≡ ẋ0. The projection onto
energy density in co-moving, with kink, reference frame relies on
integration of Eq. (2) with the energy density profile

Eq = 0 ⇒

∫
+∞

−∞

dx sech2ξ Eq = 0. (3)

Here Eq denotes the difference of the expression on the left-hand
side and the right-hand side of Eq. (2). This procedure is quite
similar to the projection onto zero mode of the kink. The only
difference lies in the fact that this profile is better localized in
the neighbourhood of the kink position. There is also a more
fundamental reason for choosing this profile. In systems with
explicitly broken invariance with respect to spatial translations
the zero mode does not exist while the energy density is still well
defined. As the final outcome of elimination of the space variable
we obtain the equation for the kink position

u̇ + αu =
2
π

Γ − ε
4
3π

(
sech3(xi − x0(t)) − sech3(xf − x0(t))

)
,

(4)

where during integration we used the formula

∂xg(x) = δ(x − xi) − δ(x − xf ).

The bracket from the right side of Eq. (4) represents the force
originated in the curved region of the junction. The potential for
this force represents the barrier associated with the curved region
(Fig. 2)

V (x0) = ε
3
4π

[
arctan(tanh(

x0 − xi
2

)) − arctan(tanh(
x0 − xf

2
))+

(5)

Fig. 2. The potential V (x0) that represents the presence of the curved region
located between xi = 0 and xf = L = 10. The parameter ε is equal to one.

1
2
sech(x0 − xi) tanh(x0 − xi) −

1
2
sech(x0 − xf ) tanh(x0 − xf )

]
.

In this paper, location of the inhomogeneity is assumed to be
between xi = 0 and xf = L.

In order to estimate the value of the critical speed that sepa-
rates the kinks reflected from the barrier from those which pass
over the barrier, we separate the problem of movement in the
barrier potential from the motion under the influence of constant
force represented by constant bias current. The total energy of
the kink that moves in the potential V (x0) is E =

1
2m0u2

+ V (x0),
where kink mass is equal m0 = 8. At the beginning of its motion
the kink moves almost freely having only kinetic energy

Ein =
1
2
m0uc

2.

We assume that at the end of its motion the kink stops on the
top of the barrier having only the potential energy

Efin = V (x0 = L/2) =
32
3π

ε

[
2 arctan

(
tanh

L
4

)
+ sech

L
2
tanh

L
2

]
.

The conservation of the energy leads to the following estimation
of the critical velocity

uc =

√
8
3π

ε

√
2 arctan

(
tanh

L
4

)
+ sech

L
2
tanh

L
2
. (6)

This estimation quite well describes the values of the critical ve-
locity even in the case when the bias current and the dissipation
term are taken into account. The reason for this is the fact that
we work with velocities for which the bias current and dissipation
almost cancel each other.

3. The influence of thermal fluctuations on the kink motion

Far from the barrier the last bracket from the right hand side
of Eq. (4) describes the residual interaction of the kink with the
barrier (which is a consequence of the interaction of the kink
tail with the curved region). We will describe how the fluxon
approaching the barrier from the left interacts with this barrier.
This residual impact will be treated approximately as a position
independent small interaction and therefore we consider the
following equation

u̇ + αu =
2
π

Γ − r, (7)

instead of Eq. (4). Here r is the above mentioned small residual
interaction.

Our intention is to describe the influence of the nonzero tem-
perature, of the system, on the process of overcoming the barrier
by the fluxon. We assume that the bias current is a random
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variable i.e. it fluctuates due to the non-zero temperature of the
system. The average value of the bias current is denoted by Γ0

⟨Γ (t)⟩ = Γ0, (8)

where averaging is with respect to all realizations of the thermal
noise. In this situation from Eq. (7) we calculate the average value
of the stationary speed (in stationary case ⟨u̇⟩ = 0)

us =
2

πα
Γ0 −

r
α

, (9)

where the average value of the stationary velocity is denoted
by us. Moreover, the thermal noise has the character of a white
Gaussian noise and therefore the time correlation function of the
bias current is assumed in the form

⟨Γ (t)Γ (t ′)⟩ = Aδ(t − t ′). (10)

In order to fix the appropriate value of the prefactor A for the
system in thermal equilibrium we came back to Eq. (7). The
solution of this equation under assumption of constant r reads

u(t) =
2
π

∫ t

0
dt ′ Γ (t ′)eα(t ′−t)

−
r
α

(1 − e−αt ). (11)

Now we are ready to calculate the time correlation function of
the velocity

⟨u(t)u(t̄)⟩ =

(
2
π

)2 ∫ t

0
dt ′

∫ t̄

0
dt ′′⟨Γ (t ′)Γ (t ′′)⟩eα(t ′+t ′′−t−t̄) (12)

−
r
α

(1 − e−αt̄ )
2
π

∫ t

0
dt ′⟨Γ (t ′)⟩eα(t ′−t)

−
r
α

(1 − e−αt )
2
π

∫ t̄

0
dt ′⟨Γ (t ′)⟩eα(t ′−t̄)

+

( r
α

)2
(1 − e−αt̄ )(1 − e−αt )

If we apply formulas (8) and (10) for average and the time
correlation of the bias current, and moreover assume t = t̄ then
we obtain

⟨u(t)2⟩ = ⟨u(t)u(t̄)⟩t̄=t =
2A

π2α
(1 − e−2αt )

+

[( r
α

)2
−

4Γ0

πα2 r
]
(1 − e−αt )2. (13)

The system after the required length of time tends to thermody-
namic equilibrium and therefore we extract in the last formula
the terms that dominate long time behaviour of ⟨u2

⟩

⟨u(t)2⟩

=
2A

π2α
+

( r
α

)2
−

4Γ0

πα2 r. (14)

The kinetic energy of the fluxon after a sufficiently long time
reads

Ek =
1
2
m⟨v(t)2⟩ =

1
2
mc̄2⟨u(t)2⟩

=
1
2
mc̄2

[
2A

π2α
+

( r
α

)2
−

4Γ0

πα2 r
]

, (15)

where m is kink mass and the dimensional speed v is related
to dimensionless velocity u as follows v = c̄u. Here c̄ is Swi-
hart velocity. We expect that after an appropriately long time
the system tends to thermal equilibrium. On the other hand,
in thermodynamic equilibrium, on the basis of the equipartition
principle, it is proportional to the temperature T

Ek =
1
2
kT , (16)

here k is Boltzmann constant. Comparison of Eqs. (15) and (16)
allows the determination of the coefficient A

A =
π2αk(T − ∆T )

2 mc̄2
, (17)

where we denoted

∆T ≡
mc̄2

k

[( r
α

)2
−

4Γ0

πα2 r
]

. (18)

For further convenience, we transform the formula (18) to the
form containing the threshold value of the bias current Γt

∆T = Ω(Γt − Γ0) − ω. (19)

This threshold value Γt separates the values of the bias current
for which the particle passes over the barrier from the values for
which the reflection occurs. The parameters in the above formula
are defined as follows

ω ≡
mc̄2

k

[
4Γt

πα2 r −

( r
α

)2
]

, Ω ≡
4 mc̄2r
πα2k

.

Finally, the average and the time correlation function of bias
currents are defined by the formulas

⟨Γ (t)⟩ = Γ0, ⟨Γ (t)Γ (t ′)⟩ =
π2αk(T − ∆T )

2 mc̄2
δ(t − t ′). (20)

Eqs. (20) are the starting point for the derivation of the Fokker–
Planck equation described in Appendix B. The stationary solution
of this equation is the following

P(u) =

√
mc̄2

2πk(T − ∆T )
exp

(
−

mc̄2

2k(T − ∆T )
(u − us)2

)
. (21)

This probability is a base for calculation of the total probability
of the transmission of the kink through the potential barrier. We
have to deal with the transition event whenever the kink speed
exceeds the critical velocity

∆P =

∫
∞

uc
duP(u) =

1
2
erf

⎛⎝√
mc̄2

2k(T − ∆T )
| uc − us |

⎞⎠ , (22)

in this formula erf denotes an error function. This probability
depends, in addition to temperature and residual effects, on the
difference of critical uc and stationary us velocities in the system.
The critical velocity separates two regimes. In the first regime the
particle passes over the barrier and in the second it reflects from
the barrier.

The probabilities obtained on the basis of the field model
((1) with stochastic bias current) and analytical result (22) based
on the Fokker–Planck approach are compared in Figs. 3–5 for
different ranges of temperatures. The fluxon energy used in the
plots is Ef = mc̄2 = 1.1 · 10−22 J. The field dynamics is
studied at the interval x ∈ [−300, 350]. We adopted the boundary
conditions that correspond to the unit topological charge, which
means that the scalar field is equal to zero on the left edge
of the interval and 2π on the right edge of the interval. The
sample size for numerical simulations is one thousand, which
means that the point corresponding to a given temperature in
these figures (derived from the field model (1)) represents one
thousand simulations performed for a given initial configuration.
In the simulations, it was assumed that the initial position of
the kink was equal to x0 = −50. In all figures the bias current
is normalized to Josephson critical current. Due to potential ap-
plications, the comparison was made for intervals from zero to
T = 50 K, T = 20 K and T = 5 K. In all plots the parameters
of the shift ∆T given in the formula (19) are fitted so that they
take the values Ω = 25220.6 and ω = −0.398529. We decided
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Fig. 3. The probability of transition of the fluxon obtained from the field
model compared in the interval T ∈ [0K , 50K ] with the analytical formula. The
parameters of the plots are α = 0.01, ε = 1, L = 10. The blue line and points
correspond to the bias current exceeding its threshold value and the red to the
bias current below its threshold value.

Fig. 4. The probability of transition of the fluxon in the interval T ∈ [0K , 20K ].
Comparison of the analytical result with the field model prediction. The param-
eters of the plots are α = 0.01, ε = 1, L = 10. The blue line and points represent
data for the bias current exceeding its threshold value and the red ones the bias
current below its threshold value.

to fit these parameters because the residual interaction is out of
our control. Starting from the field model we obtain the fit of ∆T
as a function of the absolute value of separation between actual
average value of the bias current and its threshold value. This fit
is presented in Fig. 6.

In all simulations we assume damping coefficient on the level
of α = 0.01. Moreover we assumed the size of the inhomogeneity
L = 10 and we located its position between xi = 0 and xf =

10. The strength of the heterogeneity is fixed at the level of
ε = 1. Because a relativistic formula (47) for stationary speed
is known therefore we use it in all plots (see Appendix D). On
the other hand in Figs. 3–4 the critical velocity is approximated
by the non-relativistic formula (6). This choice is motivated by
the fairly good compatibility of the approximated formula with
the results obtained on the background of the field model. On the
other hand in the case of Fig. 5 the accuracy of the formula (6)
was insufficient and therefore we used the relativistic model (43)
obtained in Appendix C.

Figs. 3–5 show that for the bias currents above the threshold
value (blue line for analytical formula and points for the field
model), as the temperature increases, the probability of the parti-
cle passing over the barrier decreases. The reduction of transition
probability is in the direction of the value of one-half, the achieve-
ment of which would make such a process completely random.
On the other hand, for the bias currents below its threshold
value (red line for the formula and points for the field model) as
the temperature increases, the probability of the particle passing

Fig. 5. Transition probability of the fluxon in the interval T ∈ [0K , 5K ]. The
parameters of the plots are α = 0.01, ε = 1, L = 10. The blue line and points
correspond to the bias current exceeding its threshold value and the red ones
to the bias current below its threshold value.

Fig. 6. ∆T as a function of modulus of difference of the threshold value of the
bias current and actual average of the bias current. The parameters of the fit
are Ω = 25220.6 and ω = −0.398529.

over the barrier also increases. The probability increases gradually
towards the half value beyond which the process would be com-
pletely random. The comparison of the results of the field model
in nonzero temperature with analytical description provided by
formula (22) shows a pretty good level of compatibility. The
results are consistent in Figs. 3 and 4, while in Fig. 5 there are
deviations below one Kelvin. Figs. 3–5 show simulations when
the currents slightly differ from the threshold current. On the
other hand, if the difference between the average bias current
and its threshold value is significant, then thermal fluctuations
have a negligible impact on the process of interaction between
the kink and the curved region. In this case the interaction is
properly described by a deterministic model i.e. if the bias current
is below the value of threshold current then the kink is reflected
from the curved region. On the other hand if bias current exceeds
its threshold value then the kink goes through the curved region.
This behaviour is crucial for possible practical applications.

4. Remarks

In the present article we considered the impact of thermal
fluctuations on the process of interaction of the kink with the
heterogeneous region of the system described by a nearly in-
tegrable sine–Gordon model. The physical background of the
studies is the influence of the curvature on the fluxon motion in
the long Josephson junction. We obtained analytical formulas that
describe probabilities of transition through and reflection of the
kink from the potential barrier that represents heterogeneity. The
main result is based on the Fokker–Planck equation obtained for
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the considered system (Appendix B). We compared the analytical
results with the simulations performed in the framework of the
field model for different ranges of temperatures. Due to potential
applications the comparison was made for intervals from zero
to T = 50K , T = 20 K and T = 5 K. The compatibility of the
analytical formula with the numerical simulations is satisfactory
in the first (Fig. 3) and the second regime (Fig. 4). In the third
regime (Fig. 5) the compliance above one 1K is also satisfactory.

The most problematic regime of temperature is presented in
Fig. 5. In this interval we resigned from the formula (6) for critical
velocity and in order to obtain a better fit we used the relativistic
model (43) for estimation of the critical speed (Appendix C). Ei-
ther way we observed in the small temperature regime presented
in Fig. 5 some discrepancy between the result of the field model
and our fit located in the interval from 0K to 1K . We identified a
probable reason for this problem.

In the low temperature regime we observed occurrence of the
resonance windows in the transition process. It means that we
observe very narrow regimes of the parameters that correspond
to transition below the critical speed and moreover the reflection
regimes above the critical velocity. This phenomenon has a place
in the effective model (43) and in the original field model (1)
as well. This phenomenon is responsible for the ambiguity of
the estimation of the critical speed and is responsible for the
discrepancy of the approximate description and the results of
the field model in Fig. 5. A similar phenomenon was previously
observed by many researchers. For example in article [34] in the
φ4 model an interaction of the kink with attracting point impurity
was studied. The existence of resonance windows in initial speeds
below some threshold velocity had found an explanation in the
resonant energy exchange between the kink internal mode and its
translational mode. This behaviour was first observed numerically
by Campbell [35] and his collaborators in the case of kink–
antikink scattering in the φ4 model. Presently there is a variety
of articles that contain a detailed explanation of the two-bounce
resonance observed in kink–antikink collisions [36]. A separatrix
map for this problem that explains the complex fractal-like de-
pendence on initial velocity for kink–antikink collisions was also
constructed. The chaotic nature of such collisions depends on
the transfer of energy to a secondary mode of oscillation [37].
In the frame of the moduli space formalism [38] a spectacular
result in reproducing the fractal structure in the formation of the
final state was reached in article [39]. The key insight of these
articles is that the existence of resonance windows is possible
due to the presence of an internal mode in the spectrum of
the kink in the φ4 model [40,41]. The situation in the case of
the sine–Gordon model is different. The linear spectra of the
kink excitations do not contain the discrete internal mode and
therefore the structure and the nature of the windows in the
model considered in this paper is enigmatic. On the other hand
the modification of the sine–Gordon model considered in this
article belongs to the so called nearly integrable variations of the
original model. The studies on this subject are ongoing and will
be presented in the future. To some degree a similar example of
the model containing resonance windows in kink–antikink inter-
actions was presented in the article [42]. This article describes
the solutions of the φ6 model that does not contain, in its linear
spectra of excitations, the discrete internal eigenmodes which, to
some degree, resembles our system.

Finally, we would like to underline that the Fokker–Planck
equation is derived under the assumption that the resulting noise
in the kink velocity is Gaussian distributed. Nonlinearities in
the governing equation may result in none Gaussian distribution
and hence this potentially may be the origin of a discrepancy
between the analytic result and the numerical simulations. On
the other hand, deviations from the predictions contained in the

derived formula appear at the lowest temperatures, i.e. in the
area where non-linear (part originated in noise) effects are the
least significant. This is the reason why we started looking for
other explanations. At this point, one could be tempted to make
a hypothesis that the presence of inhomogeneity causes cooling
in a curved region of the system (represented by correction term
∆T ). The potential physical mechanism of this cooling may be
explained by reduction of the kinetic energy of the phonon-like
excitations, present in the system, in the same area where the
kink experiences reduction of the kinetic energy as a result of
increase of the effective potential. We think that on the deeper
level of description the phonons react on the increase of an
appropriate effective potential in the curved region of the system.
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Appendix A. Relation between curvature and the shape of the
junction

The long Josephson junction considered in the paper is repre-
sented by the torsionless and therefore flat curve. The vector field
that represents this curve contains two components

X⃗(x) = xe⃗x + f (x)e⃗x, (23)

where the curve is parameterized by the parameter x and the
function f (x) represents the shape of the curve. The normal vector
to this curve

n⃗ = −
f ′(x)√

1 + f ′(x)2
e⃗x +

1√
1 + f ′(x)2

e⃗y, (24)

is fixed by the orthogonality and normalization conditions. Here
coma represents the derivative with respect to x. Next we use the
definition of curvature and thus it can be easily expressed by the
derivatives of the function f (x)

K (x) = n⃗ · X⃗ ′′
=

f ′′(x)√
1 + f ′(x)2

. (25)

The last formula can be used in order to calculate the shape func-
tion f (x), whenever we know the explicit form of the curvature
K = K (x) i.e.

f ′′(x) − K (x)
√
1 + f ′(x)2 = 0. (26)

In particular, for considered in this paper curvature the shape
function is presented in Fig. 7. For better visualization we placed
two vertical lines (the curved area is located between these two
lines).
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Fig. 7. The shape of the junction that corresponds to the considered in the
present article curvature. The curvature is nonzero in the area located between
the two black vertical lines.

Appendix B. Fokker–Planck equation

For the sake of completeness of the article we present deriva-
tion of the Fokker–Planck equation for the system studied by us.
First, let us notice that velocity variation is a random variable
with the following mean value

⟨δu⟩ = ⟨u̇ δt⟩ = (−αu − r +
2
π

Γ0) δt, (27)

where we used formula (7) and bias current mean value (8).
Similarly, formula (20) leads to the expression

⟨δuδu⟩ =
2αk(T − ∆T )

m
δt. (28)

Next the conditional probability that the particle which has ve-
locity u at time t + δt , a moment earlier i.e. at t̄ , had velocity ū
we denote by P(u, t+δt; ū, t̄). Taylor expansion of this probability
with respect to final time reads

P(u, t + δt; ū, t̄) = P(u, t; ū, t̄) + ∂tP(u, t; ū, t̄)δt, (29)

where we ignored the terms of second and higher orders in δt .
On the other hand we can obtain this expansion starting from
the Chapman–Kolmogorov equation

P(u, t + δt; ū, t̄) =

∫
+∞

−∞

du′P(u, t + δt; u′, t ′)P(u′, t ′; ū, t̄), (30)

which states that, at some intermediate time t̄ < t ′ < t + δt
the velocity u′ belongs to the interval u′

∈ (−∞, +∞). The
probability present in this formula can be expressed with the
velocity variation δu as follows

P(u, t + δt; u′, t ′) = ⟨f (u − u′
− δu)⟩, (31)

which can be expanded with respect to velocity

P(u, t + δt; u′, t ′) = f (u − u′) + ⟨δu⟩∂u′ f (u − u′)

+
1
2

⟨δu δu⟩∂2
u′ f (u − u′). (32)

Truncation at the second order is motivated by the fact that they
contain at most linear terms in δt . The Chapman–Kolmogorov
formula now reads

P(u, t + δt; ū, t̄) =

∫
+∞

−∞

du′
[f (u − u′) + (33)

⟨δu⟩∂u′ f (u − u′) +
1
2

⟨δu δu⟩∂2
u′ f (u − u′)]P(u′, t ′; ū, t̄),

Assuming that f and its first derivative disappear at plus/minus
infinity and integrating second and third terms by parts we obtain

P(u, t + δt; ū, t̄) =

∫
+∞

−∞

du′f (u − u′)[P − ∂u′ (⟨δu⟩P)

+
1
2

⟨δu δu⟩∂2
u′P], (34)

where we have used the fact that ⟨δu δu⟩ does not depend on u.
From formulas (27) and (28) it is also transparent that the last
two terms are linear in δt . Let us also notice that without ran-
dom variation δu the probability distribution is unambiguously
determined as follows f (u − u′) = δ(u − u′) and therefore after
integration we obtain

P(u, t + δt; ū, t̄) = P(u, t; ū, t̄) − ∂u
(
⟨δu⟩P(u, t; ū, t̄)

)
+ (35)

1
2

⟨δuδu⟩∂2
uP(u, t; ū, t̄).

Next we replace the average and variance of the random variable
δu from formulas (27), (28) and we obtain

P(u, t + δt; ū, t̄) = P(u, t; ū, t̄)

+∂u

(
(αu + r −

2
π

Γ0)P(u, t; ū, t̄)
)

δt + (36)

αk(T − ∆T )
m

∂2
uP(u, t; ū, t̄)δt.

Finally, comparison of the above formula with Eq. (29) leads to
the following form of the Fokker–Planck equation for the system
considered by us

∂tP = ∂u

(
(αu + r −

2
π

Γ0)P +
αk(T − ∆T )

m
∂uP

)
. (37)

The time independent (∂tP = 0) normalized solution of this
equation reads

P(u) =

√
m

2πk(T − ∆T )
exp

(
−

m
2k(T − ∆T )

(u − us)2
)

, (38)

where we used (9) in order to identify the presence of the average
stationary velocity us in the equation.

Appendix C. Effective relativistic description of the kink

In order to obtain a relativistic approximation of the critical
speed of the kink we reconsider the projection procedure onto
the energy density used in Section 2. We start again with the field
equation

∂2
t φ + α∂tφ − ∂x(F(x)∂xφ) + sinφ = −Γ0. (39)

Similarly as before we introduce the kink like ansatz into the field
equation

φ(t, x) = 4 arctan(eξ (t,x)),

where this time the function ξ takes its relativistic form

ξ = γ (t)(x − x0(t)).

Moreover, the function F is expressed by the auxiliary function
g(x)

F(x) = 1 + εg(x),

where dimensionless parameter ε controls the magnitude of cur-
vature. Next we insert the kink ansatz into the field equa-
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tion (39), obtaining[(
γ̈

γ
+ α

γ̇

γ

)
ξ − (2γ̇ u + γ u̇ + αγ u)

]
sechξ +[

(γ 2
− 1 − γ̇ 2u2) + 2γ̇ uξ −

(
γ̇

γ

)2

ξ 2

]
sechξ tanh ξ − (40)

εγ (∂xg) sechξ + εγ 2g(x) sechξ tanh ξ = −
1
2
Γ0.

We eliminate the spatial variable from the description by projec-
tion onto the energy density distribution

Eq = 0 ⇒

∫
+∞

−∞

dx sech2ξ Eq = 0. (41)

As a result of this procedure, we obtain a one-dimensional rela-
tivistic model describing the location of the kink

u̇ + αu +
4
3

u
γ̇

γ
=

4
3π

εγ
(
sech3ξL − sech3ξ0

)
+

2
πγ

Γ0, (42)

where we denoted ξL = γ (L − x0(t)) and ξ0 = γ (−x0(t)). On the
other hand, introducing to the last equation the Lorentz factor
γ = 1/

√
1 − u2 (we use the units with Swihart velocity equal to

one c̄ = 1) we obtain(
1 +

1
3

u2
)
u̇ + αu(1 − u2)

=
4
3π

ε
√
1 − u2

(
sech3ξL − sech3ξ0

)
+

2
π
(
√
1 − u2)3 Γ0. (43)

This equation is a base for estimation of the critical speed in our
system in the low temperature regime presented in Fig. 5.

Appendix D. Relativistic approximation of the stationary speed

For the sake of completeness of the presentation, we will also
recall the origin and the relativistic value of the kink stationary
speed used in this work. The bias current and dissipation present
in the system have an opposite effect on fluxon motion leading to
mutual equilibration at a certain speed [43]. The dynamics of the
soliton in the homogeneous system is described by the equation

∂2
t φ + α ∂tφ − ∂2

x φ + sinφ = −Γ0. (44)

If we multiply both sides of this equation by the time derivative of
the field φ and next integrate it with respect to the space variable,
then we obtain
d
dt

HSG
= −

∫
+∞

−∞

dx
[
Γ0 ∂tφ + α (∂tφ)2

]
, (45)

where HSG is the hamiltonian of the sine–Gordon model

HSG
=

∫
+∞

−∞

dx
[
1
2
(∂tφ)2 +

1
2
(∂xφ)2 + (1 − cosφ)

]
.

Introducing the kink ansatz

φ(t, x) = 4 arctan
(
x − x0 − ut
√
1 − u2

)
into Eq. (45) leads to the ordinary differential equation for the
fluxon velocity

du
dt

=
1
4

πΓ0(1 − u2)
3
2 − α u(1 − u2). (46)

The constant equilibrium (du/dt = 0) solution of this equation,
corresponds to the situation when the power input caused by the
bias current is balanced by the loss of power due to dissipation

us =
1√

1 + ( 4α
πΓ0

)2
. (47)

This velocity describes the stationary motion of the fluxon in the
homogeneous junction.
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2Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA

(Received 26 May 2023; accepted 21 July 2023; published 8 September 2023)

In the present study the interaction of a sine-Gordon kink with a localized inhomogeneity is considered. In the
absence of dissipation, the inhomogeneity considered is found to impose a potential energy barrier. The motion of
the kink for near-critical values of velocities separating transmission from barrier reflection is studied. Moreover,
the existence and stability properties of the kink at the relevant saddle point are examined and its dynamics is
found to be accurately captured by effective low-dimensional models. In the case where there is dissipation in the
system, below the threshold value of the current, a stable kink is found to exist in the immediate vicinity of the
barrier. The effective particle motion of the kink is investigated obtaining very good agreement with the result of
the original field model. Both one and two degree-of-freedom settings are examined with the latter being more
efficient than the former in capturing the details of the kink motion.

DOI: 10.1103/PhysRevE.108.034203

I. INTRODUCTION

The sine-Gordon (sG) model originally appeared in the
description of surfaces of constant negative curvature em-
bedded in three-dimensional space. This equation constitutes
the Gauss-Codazzi integrability condition of the surface [1].
Primarily, the model was introduced to physics in the context
of the studies on crystal dislocations [2]. Since then, it has
found many applications in describing a variety of physical
systems [3,4].

One of the prototypical examples showcasing the relevance
of the sG model concerns its application to quasi-one-
dimensional ferromagnetic materials with an easy plane
anisotropy and their behavior in an external magnetic field
[5]. Experimental studies of this system confirm the main
theoretical predictions [6–8]. Also, the relevant system has
been successfully leveraged to describe ferroelectrics [9–12].
Moreover, the orientation angle of the molecules in liq-
uid crystals has been argued to satisfy an overdamped and
externally driven sine-Gordon equation [13]. An additional
example where the sG model (especially in its damped-driven
variant) has been shown to be experimentally accessible con-
cerns an array of coupled torsion pendula; see for a relatively
recent demonstration the experiments in Ref. [14].

Arguably, the most widespread application of the sG model
concerns the description of a device called the Josephson
junction that emerged as a result of the so-called Josephson
effect [15]. Predictions of this work found experimental con-
firmation a year later [16]. Josephson junctions (JJs) have
been thoroughly studied over the years [17,18] and have found
numerous practical applications [19]. In order to obtain the
most realistic description of the JJs, additional terms were in-
troduced describing the dissipation due to tunneling of normal
electrons across the barrier, the dissipation caused by the flow
of normal electrons parallel to the barrier and moreover the
bias current [18]. Additionally, in the context of condensed
matter physics, the presence of inhomogeneities in the form

of “impurities” is a fairly common feature. More concretely,
in the JJ setting, the typical inhomogeneities are microshorts
which are local regions of high Josephson current [3,20,21].
The effect of modulation of the thickness of a dielectric
layer separating the two superconducting electrodes has been
described in many different ways [22–24]. Another way in
which explicitly position-dependent functions enter the sine-
Gordon model is presented in the works [25–27]. The latter
possibility has been motivated by the widespread relevance of
PT -symmetric systems in optical, as well as more generally
in dispersive wave systems [28].

A considerable volume of work has also focused on the
effect of shape deformation of the junction on its properties
[29–34]. In this approach, some modifications of the junction
shape are proposed in order to obtain its desired properties.
In particular, the influence of the curvature on the dynamics
of the gauge invariant phase difference between two super-
conducting electrodes that comprise the JJ was studied in
Refs. [35,36]. The equation that describes this system was ob-
tained on the basis of field dynamics governed by Maxwell’s
equations in the insulator and London’s equations in su-
perconducting electrodes with Ginzburg-Landau current of
Cooper pairs. The description in this case agrees with the
same result obtained on a purely geometrical background as a
consequence of the geometrical reduction of the sine-Gordon
model to a lower-dimensional curved subspace [37].

In the present work, we focus on describing the interaction
of a kinklike effective particle in the sG model with inhomo-
geneities for initial velocities close to the critical velocity. This
choice of initial conditions can render the interaction time
significantly longer close to this critical point which highlights
all aspects of the interaction. Our interest lies in systematically
describing this interaction via a low-dimensional, effective-
particle approach, both for the Hamiltonian (conservative)
but also for the dissipative partial differential equation (PDE)
setting. In addition to exploring the relevant PDE dynamics,
emphasis is placed on effective, low-dimensional descriptions

2470-0045/2023/108(3)/034203(17) 034203-1 ©2023 American Physical Society
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of the solitary wave in the corresponding energy landscape.
In Sec. II we will describe the field model to be studied. We
determine the shape of the kink both in the absence and in
the presence of dissipation and external forcing in the system.
This section also examines the linear stability of the solutions.
Section III is devoted to effective descriptions of different di-
mensionalities (one- and two-degree of freedom approaches)
and the limits of their applicability, as well as the comparison
between them, as well as with the original PDE. The last
section contains our conclusions and a number of proposed
directions for possible future study.

In light of our consideration of heterogeneous variants of
the sine-Gordon model, it is relevant to highlight that consid-
erable modeling and computation effort has also been invested
in the consideration of periodic heterogeneities in the form
of discrete sG models; see, e.g., also the relevant chapter
within [4]. Some of the important aspects along these lines
that have been considered include the oscillation frequency
of the discrete kink in the famous (from dislocation theory)
Peierls-Nabarro potential [38], as well as the spontaneous
emission of radiation from a propagating discrete sine-Gordon
kink [39].

II. SYSTEM DESCRIPTION

In the present article, in line with the above discussion, we
study the perturbed sine-Gordon model of the form:

∂2
t φ + α∂tφ − ∂x(F (x)∂xφ) + sin φ = −�, (1)

where the function F (x) represents the inhomogeneity. More
specifically, our motivation for considering this type of modi-
fication stems from the need to take into account the curvature
in the description of the long Josephson junction. The detailed
physical considerations leading to this effective equation are
presented in the earlier works in Refs. [35,36]. The same
equation can be obtained from the mathematical procedure
of projecting the sine-Gordon equation defined in a flat
three-dimensional space into a one-dimensional subspace,
nontrivially embedded in the initial space [37]. In the above
equation α is the dissipation coefficient while � represents
a constant external forcing. In the context of a Josephson
junction, the constant � is interpreted as a bias current. In the
absence of dissipation and external forcing, the total energy
is conserved. For later convenience, we separate the function
F (x) into a part describing the unperturbed system and a term
describing its disturbance g,

F (x) = 1 + εg(x). (2)

The parameter ε controls the magnitude of the perturbation.
We will assume that this parameter is small.

A. The nondissipative case with α = 0 and � = 0

First, we will focus on describing the simplified case, i.e.,
one in which the constants α and � are equal to zero. Although
the energy of a free kink in a homogeneous system (featuring
distinct asymptotic equilibria) corresponds to a minimum of
energy described by the formula

E =
∫ +∞

−∞
dx

[
1

2
(∂tφ)2 + 1

2
(∂xφ)2 + (1 − cos φ)

]
, (3)

it can be further lowered in the presence of inhomogeneity.
The total energy of the arbitrary field configuration in a het-
erogeneous system is of the form

EH =
∫ +∞

−∞
dx

[
1

2
(∂tφ)2 + 1

2
F (x)(∂xφ)2 + (1 − cos φ)

]
.

(4)

We describe the process of interaction of the kink with ad-
mixture present in the system. In this section, the function
g is taken in the form g(x) = tanh(x) − tanh(x − L). In this
formula, L defines the width of the inhomogeneity.

It is relevant here to briefly discuss the method with
which these profiles are obtained. We have utilized a Newton-
Raphson iteration which, through its quadratic convergence,
has ensured the rapid identification of the relevant kink pro-
files. The steady-state problem is discretized by means of
centered finite differences (of second order) and the accuracy
of the findings has been ensured by means of discretizations
of different spacing �x. It should be added that as part of the
Newton-Raphson procedure, we also construct the Jacobian
evaluated at the kink profile. This, on convergence, provides
us with the linearization matrix of the relevant problem that
will be used for the numerical identification of the eigenfre-
quencies ω discussed in more detail in what follows.

The deformation of the kink profile as a function of ε

is evident in Fig. 1 showcasing the widening of the kink
as ε is increased. From a more quantitative perspective, the
deformation of the kink profile for small ε and the stability
of this configuration can be examined in the framework of
a linearized approximation. To begin with, we assume that
the field φ is a slightly perturbed kink solution of the model
(1) [with α = 0 and � = 0]. We insert the decomposition
φ(t, x) = φ0(x) + ψ (t, x) into Eq. (1) obtaining, up to linear
terms in the ψ correction, the equation

∂2
t ψ − ∂x[F (x)∂xψ] + (cos φ0)ψ = 0. (5)

At this point we emphasize that φ0(x) can be decomposed
into static kink φK of the sine-Gordon model and a time-
independent correction χ depending also on the geometry
of the system, i.e., φ0(x) = φK (x) + χ (x). This is intended
to capture the steady-state solution of the perturbed (in the
presence of the inhomogeneity) problem. In particular, for
small values of the parameter ε, the correction χ (x) can be
calculated from the following equation:

−∂x[F (x)∂xχ ] + (cos φK )χ = ε∂x[g(x)∂φK ]. (6)

This equation describes the time-independent deformation,
which is uniquely determined by the function describing the
inhomogeneity and the analytical form of the underlying so-
lution. The solutions of Eq. (6) for different values of ε are
presented in Fig. 2. It is clear that the relevant contributions
are antisymmetric along the (former) direction of the transla-
tional invariance of the homogeneous model kink and, upon
addition to the homogeneous static kink, they modify its ef-
fective width. Moreover, the profiles of the static (numerically
exact up to a prescribed tolerance) solutions φ0(x) obtained
from the perturbed sine-Gordon model (1) are compared with
the function φK (x) + χ (x), where φK (x) is a static kink so-
lution of the sine-Gordon model in the homogeneous case.
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FIG. 1. Profiles of static solutions for different values of ε (left figure) and, for a better visualization, gradients of static configurations
(right figure). In all cases, the size of the inhomogeneity is L = 10. The inhomogeneity in the figures is located between the vertical lines for
x = 0 and x = L.

The figure shows that, even for ε = 1, there is little difference
between the solution derived from Eq. (6) and the numerical
solution derived from the field model (1).

On the other hand, Eq. (5) contains information about the
time-dependent perturbation of the underlying solution. We
then adopt a particular form of the time dependence of the
function ψ , i.e., ψ (t, x) = eiωtv(x). This standard approach
allows us to examine the spectral stability of the underlying
configuration φ0,

−∂x[F (x) ∂xv(x)] + (cos φ0) v(x) = λv(x), (7)

where λ = ω2. By abbreviating the left-hand side of the last
equation L̂ v(x) we obtain the eigenequation for the lineariza-
tion operator L̂,

L̂ v(x) = λv(x) . (8)

The spectrum of the operator L̂ obtained from Eq. (8) consists
of a continuous spectrum and a discrete negative value (see
Fig. 3). The latter eigenvalue pertains to the previously van-
ishing eigenfrequency (of the homogeneous limit) associated
with the translational invariance of the homogeneous problem.
In the present case, the negative associated squared eigenfre-
quency corresponds to a real eigenvalue illustrating that the
relevant static configuration corresponds to an unstable equi-
librium, more specifically a saddle point of the (undamped,
nondriven) Hamiltonian limit of the system. This, in turn,

represents a potential energy maximum of the effective energy
landscape, whose energy we expect to separate between the
transmission dynamics (for energies higher than that of this
configuration) and the reflection features (for energies below
those of this maximum).

B. The case with dissipation and external
forcing α �= 0 and � �= 0

For � �= 0, similarly as in the previous case, during in-
teraction with the inhomogeneity the kink may or may not
go over the barrier. The reflection in this case is much more
interesting than for � = 0. The physical cause is the presence
of a constant force pressing the particle against the potential
barrier. For this reason, after the bounce, as we will see in
the dynamical simulations below, the kink is again pushed
towards the barrier. The presence of dissipation makes sub-
sequent reflections smaller and smaller, until finally the kink
stops at a certain distance from the barrier. The form of this
resulting static configuration is specified by the equation

−∂x[F (x)∂xφ0] + sin φ0 = −�. (9)

In this equation, the bias current must be less than the thresh-
old value. The current threshold value separates the current
values for which kink is stopped before the barrier from the
values for which kink overcomes the barrier.

FIG. 2. On the left panel, the χ (x) value determined from Eq. (6) is shown for different values of ε. On the right panel, the solid line shows
the sum of the kink ansatz φK (x) and χ (x) value for different ε, while the dashed line is the corresponding static solution as determined from
Netwon’s method.
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FIG. 3. Squared eigenfrequencies λ = ω2 calculated for the quasistatic configuration depending on the value of ε for L = 10. See also the
discussion in the text.

The stability of this configuration is tested in the stan-
dard way, i.e., we linearize according to: φ(t, x) = φ0(x) +
ψ (t, x). The equilibrium configuration itself can be roughly
described, as before, by the sum of the free kink and the
deformation φ0(x) = φK (x) + χ (x), with the latter now being
characterized in addition to the inhomogeneity, also by the
bias current. The deformation satisfies the equation

−∂x[F (x)∂xχ ] + (cos φK )χ = ε∂x[g(x)∂φK ] − �. (10)

The left Fig. 4 shows the form of the correction describing
the kink deformation coming from inhomogeneities. The right
figure once again compares the static configuration obtained
from the field model (9) and the configuration obtained as
the sum of the kink solution of the homogeneous model (for
ε = 0) and the correction derived from the inhomogeneity χ .
The very good agreement between the two results for different
values of ε shows that the splitting of the configuration φ0 into
the correction χ and the kink of the free model φK provides
an accurate description of the static configuration.

On the other hand, to explore the state’s spectral stabil-
ity, we use the linearization decomposition ψ (t, x) = eiωtv(x)
which, in turn, leads to the eigenvalue problem:

L̂ v(x) = −∂x[F (x) ∂xv(x)] + (cos φ0) v(x) = λv(x) . (11)

The quantity λ appearing in this equation is related to the
eigenfrequency ω as follows λ = ω(ω − iα) (see Fig. 5), and
therefore

ψ (t, x) = e− 1
2 αt e±i�tv(x), (12)

where � =
√

λ − α2

4 . As long as the condition λ > α2/4 is
satisfied, then one can observe damped oscillations around
φ0(x), i.e., the relevant fixed point is a stable spiral. On the
other hand, when α2/4 � λ > 0 one can observe overdamped
behavior of the perturbations

ψ (t, x) = e− 1
2 αt e±κtv(x), (13)

where κ =
√

α2

4 − λ. In this case, the relevant fixed point
corresponds to a stable node. As we will see below, in this
damped-driven case, the system does possess a stable at-
tractor; however, in reconciling with the Hamiltonian picture
above, this is not the sole stationary state of the system.
Indeed, the former saddle point of the Hamiltonian case typ-
ically breaks up (in the presence of damping and driving)
through a saddle-node bifurcation into a persistent unstable
configuration and an emergent stable one (per the above dis-
cussion). We will iterate on this point further through our
effective description in what follows.

III. EFFECTIVE DESCRIPTION OF THE
KINK-INHOMOGENITY INTERACTION

A. Approximations based on one degree of freedom

Having described the statics of the kink in the presence of
the inhomogeneity, we now turn to the corresponding model
dynamics in what follows. In this subsection, we will ob-
tain an approximate description of the field system based on

FIG. 4. In the left panel, the χ (x) value determined from Eq. (10) for different values of ε is shown. In the right panel, the solid line shows
the sum of the kink ansatz φK (x) and χ (x) value for different ε, while the dashed line is the corresponding static solution determined from
original field model. In each case α = 0.01, while bias current is equal to 0.0045, 0.0093, and 0.017, respectively, for ε = 0.1, 0.3, and 1.0.
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FIG. 5. Dependence of λR = ω2 on ε for the static kink solution in the damped-driven sG model, where λR is the real part of λ [see under
Eq. (11)]. The graph regards the case of α = 0.01 and � = 0.001 for each ε.

three approximation methods. The first method is based on
a conservative Lagrangian of the system (i.e., an effectively
variational method). The second method involves projecting
the field equation onto the zero mode of the kink solution
(the so-called translational mode, associated with the relevant
invariance in the homogeneous limit), while the third one is
based on a nonconservative Lagrangian. The last two methods
allow the construction of an effective model even if there is
a dissipation in the field equation, while the first is solely
applicable in the realm of conservative (Lagrangian or Hamil-
tonian) systems.

1. The construction based on a conservative Lagrangian

We start from the variation of the Lagrangian density

LFSG = LSG + Lε = LSG − 1
2εg(x)(∂xφ)2, (14)

where Lε describes the inhomogeneity present in the system
and LSG is the Lagrangian density of the (unperturbed) sine-
Gordon model

LSG = 1
2 (∂tφ)2 − 1

2 (∂xφ)2 − (1 − cos φ). (15)

A recent discussion of such variational methods for the sG
model, including in higher-dimensional settings can be found,
e.g., in Ref. [40].

The reduction of the original PDE to a model with one
degree of freedom is based on the use of the kink ansatz with
the position of the kink used as a collective variable,

φk (t, x) = 4 arctan ex−x0(t ). (16)

By inserting the kink ansatz into the Lagrangian density (14)
and then integrating with respect to the spatial variable, we
obtain the effective Lagrangian for the variable x0(t ),

LFSG =
∫ +∞

−∞
dx LFSG = LSG + Lε = LSG

− 1

2
ε

∫ +∞

−∞
dxg(x)(∂xφK )2. (17)

The form of the interaction is uniquely determined by the
function g(x). In the case where g(x) = 0 we obtain the
Lagrangian of the free particle (after rescaling by the multi-
plicative constant and eliminating the additive one),

LFSG = LSG = 1
2 ẋ2

0 . (18)

If g is a nontrivial position-dependent function, then the effec-
tive Lagrangian is enriched by a potential energy landscape
describing the interaction of the kink with the existing in-
homogeneity. For example, if the function g consists of unit
step functions g(x) = θ (x) − θ (x − L), then the Lagrangian
assumes the form

LFSG = 1
2 ẋ2

0 − ε[tanh(x0) − tanh(x0 − L)]. (19)

The equation of motion in this case is the following:

ẍ0 = −ε[sech2(x0) − sech2(x0 − L)]. (20)

On the other hand, in the previous section we used the func-
tion g(x) = tanh(x) − tanh(x − L). In this case the effective
Lagrangian reads

LFSG = 1

2
ẋ2

0 − 1

2
ε

{
coth(x0) − x0

sinh2(x0)

−
[

coth(x0 − L) − x0 − L

sinh2(x0 − L)

]}
. (21)

The potential energy landscape is provided by the term after
the (−) sign in Eq. (21) [or similarly in Eq. (19)] and clearly
illustrates the existence of a local maximum corresponding to
the saddle static kink configuration. The equation of motion
for the collective variable is

ẍ0 = ε

[
1 − x0 coth x0

sinh2 x0
− 1 − (x0 − L) coth (x0 − L)

sinh2 (x0 − L)

]
. (22)

The trajectories obtained from the last equation are com-
pared with center-of-mass trajectories following from the field
equation [Eq. (1) with α = 0 and � = 0]. Figure 6 shows a
good agreement between the effective model and the full field
model for small values of ε. The left panel in this figure cor-
responds to ε = 0.01 while the right panel contains results for
ε = 0.05. Each of the panels consists of three figures. The top
figure describes the kink reflecting from the inhomogeneity.
The initial speed in this case u = 0.13 is lower than the
critical velocity. The second figure in this panel represents
the interaction of the kink whose initial speed u = 0.145 is
close to the critical velocity. The bottom figure demonstrates
the kink passing over the barrier for initial speed u = 0.16
exceeding the critical value. Similarly, in the figures of the
right panel, the velocities are smaller u = 0.27, close to the
critical value u = 0.315 and above the critical speed for u =
0.35. The critical velocities for which the agreement takes
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FIG. 6. Comparison of the position of the center of mass of the kink for the solution from the original field model (black line) and the
model with one degree of freedom [red (gray) line]. The figures in the left panel are prepared for ε = 0.01 and velocities (starting from the
top) 0.13, 0.145, and 0.16. In the right panel ε = 0.05 and velocities (from the top) are 0.27, 0.315, and 0.35.

place are approximately limited to 0.25. For larger values of
this parameter, inconsistencies become more significant. The
trajectories corresponding to ε = 0.02 are presented in Fig. 7.
The initial velocities of the kink are, starting from the top,
0.17, 0.21, and 0.25. The right panel shows the course of
these trajectories [represented by the red (gray) line] on the
background of the phase space. The phase diagrams show an
unstable fixed point at the center of the barrier.

The corresponding potential energy landscape representing
the relevant energy maximum can be seen in Fig. 8. In the case
we are considering, the location of the fixed point is x0 = 5.

Regarding the linear stability in the effective particle model,
only one (unstable mode) is naturally present, pertaining to the
formerly translational mode of the homogenous sG. A com-
parison of this mode with the spectrum of linear excitations
of the field model (α = 0, � = 0) can be found in Fig. 9. The
green (light gray) line represents the result obtained from the
model with one degree of freedom, while the points represent
the spectrum of the L̂ operator. Quantitative agreement occurs
only for small values of the ε parameter, yet the qualitative
agreement between the two is clearly evident.

2. The method of projecting onto the zero mode

In addition to the above method of effective theory con-
struction, other approaches are used in the literature. One of
them is the zero mode projection method; see, e.g., a relevant
discussion in Ref. [41]. This method, unlike the standard
method based on the conservative Lagrangian, is based on the

PDE itself and does not hinge on the variational structure of
the problem. As such, it allows for an effective description of
systems containing dissipative terms. With this in mind, we
can construct an effective model for the sine-Gordon model
with dissipation described by Eq. (1) with α �= 0 and � �= 0.
Practically, we insert the kink ansatz

φ(t, x) = 4 arctan eξ (t,x), (23)

into the field equation (1). This substitution results in the
equation

(ξ̈ − ξ ′′ + αξ̇ )∂ξφ + (1 + ξ̇ 2 − ξ ′2) ∂2
ξ φ

= ε(∂x g) ξ ′ ∂ξφ + εg
(
ξ ′′∂ξφ + ξ ′2∂2

ξ φ
) − � . (24)

The dot denotes the derivative with respect to the time vari-
able while the prime denotes the derivative with respect to
the spatial variable. If we want to obtain a model describing
the dynamics of one collective variable, i.e., the variable that
determines the position of the kink, then we take a particular
form of the function ξ = ξ (t, x), i.e.,

ξ (t, x) = x − x0(t ).

With this substitution, Eq. (24) is reduced to a much simpler
form,

(−ẍ0 − αẋ0)∂ξφ + ẋ2
0 ∂2

ξ φ − ε(∂x g) ∂ξφ − εg∂2
ξ φ + � = 0.

(25)

The final step is the projection of the above equation onto
the (former) zero mode, which consists of integration with
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FIG. 7. Comparison of the position of the center of mass of the kink for the solution from the original field model (black line) and the
model with one degree of freedom [red (gray) line]. In the figures on the left ε = 0.02 and velocities are (from the top) u = 0.17, u = 0.21,
and u = 0.25. On the right are the phase diagrams corresponding to the same parameter values. The gray area represents the position of the
inhomogeneity.

the kink ansatz derivative representing the zero mode of the
(former) homogeneous model, i.e.,∫ +∞

−∞
dξ

[
(−ẍ0 − αẋ0)∂ξφ + ẋ2

0 ∂2
ξ φ

− ε(∂x g) ∂ξφ − εg∂2
ξ φ + �

]
∂ξφ = 0. (26)

When performing integration, we must adopt a particular
form of the function g describing the inhomogeneity. In this
part, we assume similarly to the previous one g(x) = tanh x −
tanh(x − L). As a result of the integration, we obtain an

FIG. 8. Graphical representation of the potential represented by
the second term (preceded by a minus sign) of Eq. (21). In the figure,
we assumed ε = 0.1 and L = 10.

effective equation of the form

ẍ0 + αẋ0 + ε

[
x0 coth x0 − 1

sinh2 x0
− (x0 − L) coth(x0 − L) − 1

sinh2(x0 − L)

]

= π

4
�. (27)

Note that after removing the terms containing the coefficients
α and �, the above equation reduces to Eq. (22) and therefore,
in this case, the numerical results are included in Figs. 6 and 7.

FIG. 9. Comparison of the squared eigenfrequencies λ = ω2 ob-
tained from the field model (in case of α = 0, � = 0) with the ones
determined from the effective model with one degree of freedom
[green (light gray) line].

034203-7

62



GATLIK, DOBROWOLSKI, AND KEVREKIDIS PHYSICAL REVIEW E 108, 034203 (2023)

FIG. 10. Comparison of the position of the center of mass of the kink for the solution from the original field model (black line) and the
model with one degree of freedom (red dashed line). In the figures on the left ε = 0.01 and bias current from the top 0.001 (top row), 0.0015
(second row), then ε = 0.05 and bias current 0.0025 (third row), 0.0035 (fourth row). In each case, the dissipation is equal to 0.01. On the right
are the phase diagrams corresponding to the same parameter values. The gray area represents the position of the inhomogeneity.

On the other hand, if we have dissipation and current present
in the system, then below the critical velocity, we observe
the effect of multiple reflections from an inhomogeneity. The
course of this process is shown in Fig. 10. In these figures, we
assume that the dissipation coefficient is α = 0.01 and that
the bias current � is equal to 0.001 in the top left figure and
0.0015 in the second row of the figure, respectively. In both
figures, ε = 0.01. The initial velocity of the kink in all cases
with dissipation is chosen to be equal to the stationary velocity
obtained in the article [20], i.e., according to the formula:

us = 1√
1 + (

4α
π�

)2
. (28)

Equation (1) at ε = 0 has a solution in the form of a kink mov-
ing with constant velocity only when the dissipation occurring
in the system is exactly balanced by the forcing in the form of
a bias current, i.e., only for stationary velocity us. The initial
condition describing a kink with velocity u > us always, due
to the existence of dissipation, slows down to a value of us. On
the other hand, the initial condition with u < us, as a result of
forcing, accelerates to us, i.e., to the velocity at which there
is a balancing of forcing with dissipation. For this reason, if

the initial velocity takes the value us (for ε �= 0) the velocity
changes are related only to the interaction with the inhomo-
geneity. Note that in both of these cases the kink trajectory
resulting from the field model (solid black line) coincides
with the trajectory obtained from the effective model (dashed
red line). As one can see, in these runs the kink has too-low
velocity to penetrate the barrier hence it bounces back; yet
the presence of constant forcing causes successive returns
toward the barrier. Due to the existence of dissipation in the
system, the amplitude of subsequent reflections is reduced.
From a dynamical systems perspective, this clearly suggests
the existence of a fixed point in the form of a stable spiral,
which is unveiled in the phase portrait illustrated in the right
panel of the figure. The third and fourth rows of the figure il-
lustrate the relevant features for a larger value of the parameter
ε = 0.05 characterizing the inhomogeneity. Respectively, the
corresponding bias currents are � = 0.0025, and � = 0.0035.
It can be seen that in these cases the deviations of the continu-
ous black and dashed red lines are insignificant and therefore
the right panel contains only the phase space of the effective
model. In the phase space presented in the figures of the right
panel, one can identify two fixed points. The point located
on the left side of the barrier, as discussed above, represents
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FIG. 11. Graphical representation of the position (and existence)
of fixed points for different values of bias current [see Eq. (29)].
These are the places where the function f (x0 ) vanishes. In all cases
ε = 0.1.

a stable spiral. The trajectories shown in the figures of the
left panel are represented on the right panel by using red
spirals. The second fixed point is located in the barrier area
(representing the analog or remnant of the fixed point present
in the conservative case) and has the character of a saddle
point. In all panels of Fig. 10, the gray area represents the
position of inhomogeneity or more precisely the area located
between x = 0 and x = L. The stable manifold of the saddle
represents on each side the separatrix between the trajectories
that are transmitted and those that are reflected. The location
of the fixed points can be determined by referring to Eq. (27).
By transferring the bias current to the left side and zeroing out
all derivatives with respect to time to identify the fixed points,
we obtain a function f (x0),

f (x0) ≡ ε

[
x0 coth x0 − 1

sinh2 x0
− (x0 − L) coth(x0 − L) − 1

sinh2(x0 − L)

]

− π

4
� = 0, (29)

whose zeros indicate the desired equilibria. Figure 11 shows
the positions of these points depending on the value of the
current. It can be seen that for currents below the threshold
value, i.e., for 0.003, 0.013, 0.023, and 0.033 there are two
fixed points, a stable one on the left and an unstable one on the
right. Physically, the presence of a stable fixed point is related
to the fact that the kink, not having enough energy to cross
the barrier bounces off it before getting trapped on the stable
spiral fixed point. On the other hand, the constant forcing
presses the kink to move towards the barrier. At the same
time, the kink loses energy due to dissipation which leads to
its eventual stopping. The presence of the second fixed point
can be interpreted as the kink sliding off the barrier and is
an effective remnant of the conservative case with � = 0. For
the threshold value of the bias current, i.e., � = 0.043 only an
unstable point remains. When the value of the current exceeds
the threshold value (e.g., for � = 0.053 and � = 0.063) the
fixed points do not occur. In these cases, the barrier is unable
to stop the kink because the energy provided by the drive is
too high. For negative values of the current, the situation is
symmetrical with respect to the barrier, as long as the kink

moves from the right side toward the left, i.e., the stable point
is on the right side of the barrier while the unstable one is
located on the barrier.

Similarly to Fig. 6, Fig. 12 shows the kink interaction
with the inhomogeneity for two values of ε. The left panel
corresponds to ε = 0.01 while the right one corresponds to
ε = 0.05. Initial speeds are determined by the formula (28).
In all plots, the dissipation coefficient is equal to α = 0.01. In
the left panel the bias current � is equal, respectively, in the
three rows (0.0015, 0.00155, and 0.0016), while in the right
panel it is 0036, 0.00384, and 0.0041. In these two panels the
upper figures show a reflection of the kink from the barrier
(leading to its eventual trapping). The middle figures represent
the interaction of the kink with velocity close to the critical
speed, ultimately in these cases leading to transmission. The
bottom figures show the passage of a kink over a barrier
for speeds above the critical velocity. It can be seen that for
ε = 0.01 the agreement of the prediction of the approximate
equation and the original one is very good while for ε = 0.05
we observe nontrivial discrepancies, which suggest the poten-
tial of the latter scenario for further improvement, as concerns
its theoretical description. Finally, it is worth noting that the
equations of motion in the case of zero mode projection and
the method based on the conservative Lagrangian are identical
for α = 0 and � = 0. This behavior for effective models with
one degree of freedom is not a coincidence. In the Appendix,
we show that in the case without dissipation the two effective
descriptions are equivalent.

3. The method based on nonconservative Lagrangian

Another proposal for obtaining both the original field equa-
tion (containing the dissipation) and the effective equation of
motion for the collective coordinate reduced description is
a method based on the nonconservative Lagrangian density
[26,42]. The field equation in this case can be obtained based
on the standard conservative Lagrangian density L and the
nonconservative contribution R,

∂μ

[
∂L

∂ (∂μφ)

]
− ∂L

∂φ

= lim
φ−→0

(
lim

φ+→φ

{
∂R
∂φ−

− ∂μ

[
∂R

∂ (∂μφ−)

]})
. (30)

In the system we are currently considering, L = LFSG and
R = −αφ−∂tφ+ − �φ−. Here φ− and φ+ are auxiliary fields
with the property that in the so-called physical limit φ− → 0
and φ+ → φ. Equation (30) written above reproduces the
field equation (1) with dissipation. The effective Lagrangian
and the nonconservative potential at the effective level are
obtained by inserting the kink ansatz into the densities and
integrating over the spatial variable

L =
∫ +∞

−∞
L(φK , ∂μφK )dx, R =

∫ +∞

−∞
R(φK±, ∂μφK±)dx.

(31)
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FIG. 12. Comparison of the position of the center of mass of the kink for the solution from the original field model (black line) and the
model with one degree of freedom [red (gray) line]. The left panel contains figures for inhomogeneity ε = 0.01 and bias current with values
(starting from the top) 0.0015, 0.00155, and 0.00165. On the right panel results for ε = 0.05 are presented. Starting from the top the bias
current is 0.0036, 0.00384, and 0.0041. In each case, the disipation was equal to 0.01.

The effective equation has a similar structure to the original
one,

∂t

(
∂L

∂ ẋ0

)
− ∂L

∂x0
= lim

x−→0

{
lim

x+→x0

[
∂R

∂x−
− ∂t

(
∂R

∂ ẋ−

)]}
.

(32)

After substituting the effective quantities into Eq. (32), we get

ẍ0 + ε

[
x0 coth x0 − 1

sinh2 x0
− (x0 − L) coth(x0 − L) − 1

sinh2(x0 − L)

]

= −αẋ0 + π

4
�. (33)

Note that this equation is identical to Eq. (27) and for α = 0
and � = 0 reduces to Eq. (22). Per our previous discussion,
the trajectories in this simplified case have been compared
with the trajectories obtained in the original field model in
Fig. 6, while the case with dissipation (α �= 0 and � �= 0) has
been shown in Figs. 10 and 12.

B. Approximations based on two degrees of freedom

We now turn to representations of the effective solitary
wave dynamics using two degrees of freedom. More specif-
ically, we consider the position of the kink x0(t ) and a
parameter describing its effective inverse width parametrized
by γ (t ) through the ansatz

φK (t, x) = 4 arctan eγ (t )[x−x0(t )]. (34)

Such a functional form is expected to allow us both to better
describe the motional effects of the kink and also to capture
the (potential) excitation of the kink’s vibrational (internal
breathing) mode. We now proceed to provide the associated

details, providing all three of the effective descriptions used
before (one for the Hamiltonian and two for the damped-
driven problem).

1. The construction based on a conservative Lagrangian
(for α = 0 and Γ = 0)

Similarly to the previous section, after integrating the
model Lagrangian (14) over the spatial variable x, we obtain
in this case a sine-Gordon part of the effective Lagrangian of
the form

LSG = 4γ ẋ2
0 + π2

3γ 3
γ̇ 2 − 4

(
γ + 1

γ

)
. (35)

The form of the second part of the effective Lagrangian is
strongly dependent on the shape of the inhomogeneity, i.e.,
on the analytical form of the function g(x). For example, for a
function consisting of a unit step g(x) = θ (x) − θ (x − L) this
part of the Lagrangian is as follows:

Lε = −2εγ {tanh(γ x0) − tanh[γ (x0 − L)]}. (36)

Then the equations of motion in this case (stemming from the
effective Lagrangian L = LSG + Lε) have a relatively compact
form,

ẍ + γ̇

γ
ẋ0 + 1

4
εγ {sech2(γ x0) − sech2[γ (x0 − L)]} = 0,

2π2

3

γ̈

γ
− π2 γ̇ 2

γ 2
− 4γ 2ẋ2 + 4(γ 2 − 1) + 2εγ 2{tanh(γ x0)

− tanh[γ (x0 − L)]} + 2εγ 3{x0sech2(γ x0)

− (x0 − L)sech2[γ (x0 − L)]} = 0. (37)
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FIG. 13. Comparison of the position of the center of mass of the kink for the solution of the original field model (black line) and the model
with two degrees of freedom [red (gray) line] for on the left ε = 0.1 and velocities are (from the top) 0.4, 0.415, and 0.43 and on the right
ε = 0.2 and velocities are (from the top) 0.523, 0.53, and 0.56.

Due to the high complexity and length of the formulas, we
do not give the form of the equations obtained for g(x) =
tanh(x) − tanh(x − L); however, these equations are used
when comparing the effective model with the field model (1).
For completeness of description, the part Lε of the Lagrangian
responsible for the interaction with the inhomogeneity for this
case is given as:

Lε = 8γ εe2γ x0

(e2γ x0 − 1)2(e2γ L − e2γ x0 )2
(e2γ L(e2γ x0 − 1)2 log(e2γ L )

+ 4 sinh(γ L)e2γ (L+x0 ){− cosh(γ L) + cosh[γ (L − 2x0)]

+ log(e2γ x0 ) sinh[γ (L − 2x0)]}). (38)

As before, the effective Lagrangian LFSG consists of two parts,
i.e., the effective Lagrangian of the free sine-Gordon model
(35) and the Lagrangian describing the interaction with inho-
mogeneity (38). This effective Lagrangian is used to obtain
the equations of motion.

The trajectory describing the movement of the center of
mass resulting from Eq. (1) (black line) is compared with the
time dependence of the collective variable x0(t ) [red (gray)
line] in Fig. 13. In the figure, very good agreement between
the effective model and the field model is achieved up to ε

values equal to 0.2. In the figures, the parameter L describing
the width of the inhomogeneity is equal to 10. It is interest-
ing to note that the introduction of a second variable γ (t )
significantly improves the predictions of the effective model
relative to the x0(t ) variable. On the other hand, predictions
about the γ (t ) variable itself are of more limited value. As a

kink approaches the heterogeneity its width becomes suitably
modulated. The changes in thickness gradually disappear with
time at the field-theoretic level, after which the thickness sta-
bilizes at a level characteristic of the stationary kink solution.
Figure 14 compares the thickness of the static kink solution
that follows from the effective model and the corresponding
value derived from the field model. It can be seen that as
ε increases, the model increasingly underestimates the value
of the γ variable, although the relevant deviation is quite

FIG. 14. Fit of γ values depending on the ε determined from
the solution of the original PDE (orange dots) with standard error
calculated by maximum likelihood estimation compared with the γ

determined from a model with two degrees of freedom [green (light
gray) line]. The figure describes the evolution when the inhomogene-
ity is in the form of a combination of hyperbolic tangents. In addition,
α = 0 and � = 0.

034203-11

66



GATLIK, DOBROWOLSKI, AND KEVREKIDIS PHYSICAL REVIEW E 108, 034203 (2023)

FIG. 15. In the left panel of the figure, the evolution of the γ (t ) variable in the original field model. The right panel of the figure compares
the results of the field model with an effective model with two degrees of freedom. In both cases ε = 0.1.

small and also it is clear that the model captures the nature
of the qualitative trend of the effect of the perturbation of
ε on the parameter γ . Figure 15 compares the oscillations
of the γ variable in the effective model and the oscillations
of the kink thickness as the kink passes through the inho-
mogeneity. The differences here are nontrivial although in
both descriptions (i.e., exact and effective) the nature of the
vibration changes similarly in the area of inhomogeneity. At
the level of Eqs. (37), one can trace this effect in the presence
of terms such as the one ∝ γ 2ẋ2 in the dynamical equation for
the evolution of γ (t ). Indeed, while we observe that the field
dynamics retain γ to a nearly constant value far from the
inhomogeneity, the above mentioned term is “active” in the
reduced model equation leading to oscillatory dynamics of
the kink width. Indeed, this is a point of potential future im-
provement of the reduced model as the latter is not presently
capturing the Lorentz invariance of the homogeneous kink
which would enable it to move with constant speed with-
out inducing a width vibration. Nevertheless, the qualitative
trends of variation of γ (t ) induced by the inhomogeneity are
captured by the two-degree-of-freedom model (superimposed
to the above-mentioned vibration).

Finally, the two-degree-of-freedom effective model natu-
rally reproduces the two modes belonging to the spectrum
of the L̂ operator (see Fig. 16) in the case of the unstable
saddle equilibrium of the Hamiltonian model kink centered at
the impurity region. The first unstable mode (corresponding
to the instability of the kink’s position at the center of the
inhomogeneity) is associated with the x0 variable, i.e., pertains
to the former translational mode, and the oscillating mode
(corresponding to changes in the thickness of the kink) is
associated with the γ variable. This second mode is essentially
connected with the band edge of the continuous part of the
spectrum of the operator L̂. Both modes of the effective model
are represented by green (light gray) lines.

2. The method of projecting onto the zero mode
(for arbitrary α and Γ )

In the case of two degrees of freedom, we insert ξ (t, x) into
Eq. (24) in the form of

ξ (t, x) = γ (t )[x − x0(t )].

This substitution results in the equation

[(
γ̈

γ
+ α

γ̇

γ

)
ξ − (2ẋ0γ̇ + αγ ẋ0 + γ ẍ0)

]
∂ξφK

+
[(

γ̇

γ

)2

ξ 2 − 2ẋ0γ̇ ξ + (γ 2ẋ2
0 − γ 2 + 1)

]
∂2
ξ φK

= εγ (∂x g) ∂ξφK + εγ 2g∂2
ξ φK − �. (39)

The first of the equations of the two-degree-of-freedom effec-
tive model is obtained similarly to the one-degree-of-freedom
model, i.e., by projecting to the (former) zero mode. We mul-
tiply the above equation by the derivative of the kink ansatz
and then perform an integration over the entire domain to
remove the dependence on the spatial variable. In the case
of the second equation, before calculating the integrals, we
additionally multiply the equation by ξ , which changes the
parity of the calculated integrals,

ẍ0 + αẋ0 + γ̇

γ
ẋ0 − 1

8
εγJ = π

4γ
�,

2π2

3

(
γ̈

γ
+ α

γ̇

γ

)
− π2 γ̇ 2

γ 2
− 4γ 2ẋ2

+ 4(γ 2 − 1) − εγI1 − εγ 2I2 = 0. (40)

The integrals appearing in the equations for different forms of
the function g describing the inhomogeneity have the form

J =
∫ +∞

−∞
g(x)(∂ξφK )

(
∂2
ξ φK

)
dξ,

I1 =
∫ +∞

−∞
[∂xg(x)] ξ (∂ξφK )2dξ,

I2 =
∫ +∞

−∞
g(x) ξ (∂ξφK )

(
∂2
ξ φK

)
dξ . (41)

In the simplest case where the function g consists of step func-
tions, i.e., g(x) = θ (x) − θ (x − L), the equations of motion
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FIG. 16. Comparison of the determined squared eigenfrequen-
cies λ = ω2 from the linearization Jacobian (in case of α = 0, � = 0)
with those obtained from the model with two degrees of freedom
linearized around the equilibrium state of the latter [green (light gray)
line].

can be converted to the form

ẍ + αẋ0+ γ̇

γ
ẋ0+1

4
εγ {sech2(γ x0) − sech2[γ (x0−L)]}= π

4γ
�,

2π2

3

(
γ̈

γ
+ α

γ̇

γ

)
− π2 γ̇ 2

γ 2
− 4γ 2ẋ2 + 4(γ 2 − 1)

+ 2εγ 2{tanh(γ x0) − tanh[γ (x0 − L)]} + 2εγ 3

× {x0 sech2(γ x0) − (x0 − L)sech2[γ (x0 − L)]} = 0.

(42)

Note that these equations reduce to the system (37) when we
take α and � equal to zero.

3. The method based on nonconservative Lagrangian
(for arbitrary α and Γ )

As we described in the previous sections, Equation (1)
can be obtained using a nonconservative Lagrangian density
through Eq. (30), where R represents the nonconservative
contribution. In the case of an effective model with two de-
grees of freedom, the effective conservative Lagrangian and
the effective nonconservative potential are obtained by inte-
grating over the spatial variable (31). The only difference is
the assumed ansatz, which in the case of two degrees of free-
dom has the form described by Eq. (34). In the model defined
in this way, we have two effective equations of motion,

∂t

(
∂L

∂ ẋ0

)
− ∂L

∂x0
=

[
∂R

∂x−
− ∂t

(
∂R

∂ ẋ−

)]
PL

,

∂t

(
∂L

∂γ̇

)
− ∂L

∂γ
=

[
∂R

∂γ−
−∂t

(
∂R

∂γ̇−

)]
PL

. (43)

In the physical limit (denoted here by PL) the auxiliary vari-
ables x− and γ− disappear, while x+ → x0 and γ+ → γ . On
the other hand, the Lagrangian consists of the sine-Gordon
part (35) and the interaction term, i.e., L = LSG + Lε and

therefore the equations of motion can be written as follows:

ẍ0 + γ̇

γ
ẋ0 − 1

8γ

∂Lε

∂x0
= 1

8γ

[
∂R

∂x−
− ∂t

(
∂R

∂ ẋ−

)]
PL

,

2π2

3

γ̈

γ
− π2 γ̇ 2

γ 2
− 4γ 2ẋ2

0 + 4(γ 2 − 1) − γ 2 ∂Lε

∂γ

= γ 2

[
∂R

∂γ−
− ∂t

(
∂R

∂γ̇−

)]
PL

. (44)

The right-hand sides of these equations we obtain by calcu-
lating the nonconservative potential and its derivatives in the
physical limit,

ẍ0 + γ̇

γ
ẋ0 − 1

8γ

∂Lε

∂x0
= −αẋ0 + π

4γ
�,

2π2

3

γ̈

γ
−π2 γ̇ 2

γ 2
−4γ 2ẋ2

0 +4(γ 2−1)−γ 2 ∂Lε

∂γ
= −2π2

3
α

γ̇

γ
.

(45)

We recall here that the interaction with the inhomogeneity is
described by the following integral:

Lε = −1

2
ε

∫ +∞

−∞
g(x)(∂xφK )2, (46)

where φK denotes the ansatz (34). For example, in the case
of inhomogeneity defined by the unit step functions g(x) =
θ (x) − θ (x − L) we get equations identical to the formulas
(42), obtained previously using the projection approach. A
different situation occurs for inhomogeneities defined by hy-
perbolic tangents g(x) = tanh (x) − tanh (x − L). Naturally,
if in the system there is dissipation, then we can only use
the method based on the nonconservative Lagrangian and
the method of projection onto the zero mode. The results
of the two methods are found to differ slightly as shown in
Fig. 17, favoring the nonconservative Lagrangian method as
more accurate. Figure 17 compares trajectories obtained for
the inhomogeneity of g(x) = tanh(x) − tanh(x − L) using a
method based on a nonconservative Lagrangian for two de-
grees of freedom [red (gray) line] and a zero mode projection
[green (light gray) line]. In all figures, the black line repre-
sents the result obtained from the full field model PDE. The
inhomogeneity in the figures of the left panel corresponds to
ε = 0.05, while for the right panel it is ε = 0.1. We used the
following currents on the left panel, starting from the top,
0.0032, 0.0037, and 0.0042. On the right panel, the currents
are assumed to be (again, starting from the top) 0.005, 0.0054,
and 0.0058. In all figures, the dissipation is assumed to be
α = 0.01. We found that as the parameter ε increases, the
method of projecting onto the zero mode to a higher extent
than the method based on the nonconservative Lagrangian
underestimates the position of the kink.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the behavior of the kink
in the sine-Gordon model in the presence of a localized in-
homogeneity. In the case without dissipation, we focused on
the interaction of the kink with the impurity region at speeds
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FIG. 17. Comparison of the position of the center of mass of the kink for the solution from the original field model (black line) and
models with two degrees of freedom based on projecting onto the zero mode according to (40) [green (light gray) line] and on nonconservative
Lagrangian according to (45) [red (gray) line]. The left panel contains figures for inhomogeneity strength ε = 0.05 and bias current with values
(starting from the top) 0.0032, 0.0037, and 0.0042. On the right panel, results for ε = 0.1 are presented. Starting from the top, the bias current
is 0.005, 0.0054, and 0.0058. In each case, the dissipation was equal to 0.01.

proximal to the critical velocity separating transmission from
reflection. In the immediate vicinity of the relevant critical
point (which we identified as a saddle), we observed the kink
slowing down for an extended time interval at the center of
the inhomogeneity. The process of the kink interaction with
the inhomogeneity was also described within the framework
of effective models with one and two degrees of freedom. As
expected, the description with one collective variable works
well for small values of the perturbation parameter ε. On
the other hand, the inclusion of a second collective variable,
effectively characterizing the width of the coherent structure,
significantly improves the predictions of the effective model
including for somewhat larger values of ε. At the same time,
however, the predictions for the second collective variable
bear some differences in comparison to the field description
albeit in ways that were explained in the associated discus-
sion. In particular, the second collective variable is intended
to identify the occurrence of the interaction, while the re-
duced description also seems to identify a vibrational mode
associated with the edge of the continuous spectrum. A more
refined representation of the relevant mode that yields a close
agreement with the field-theoretic results constitutes a natural
question for future study.

The case of interaction of a kink with an inhomogeneity in
a system with dissipation and external drive presents further
intriguing features in its own right. The passage of the kink
through the barrier or reflection depends on the relationship
between the external forcing and the dissipation. Particularly

interesting here is the process of interaction of the kink with
the barrier for bias currents smaller than the threshold current.
In this case, we observe successive reflections of the kink
from the barrier caused by the bias current pushing it toward
the barrier. Oscillations of the kink position are naturally
damped due to the presence of dissipation in the system. The
shape of the final static configuration can be determined on
the basis of a linearized approximation and reveals a stable
spiral fixed point of the effective description. The reduced
model description of the process of interaction of the kink
with the inhomogeneity below the threshold current leads to
surprisingly consistent results with those from the original
PDE. Moreover, the effective models with two degrees of
freedom (for small ε) correctly approximate the excitation
spectrum obtained on the ground of the linear approxima-
tion (Fig. 16), as well as the associated dynamics. While
both related methods are found to be qualitatively adequate,
the nonconservative Lagrangian approach developed herein is
also found to be highly quantitatively accurate in describing
the kink evolution (for one degree of freedom, the different
approaches developed are found to yield identical results in
suitable limits).

It is also worth noting that in real physical systems we
have to deal with various types of random distortions. The
most common such disturbance is thermal noise. The natural
question then arises regarding the conditions under which the
presence of noise does not significantly change the conclu-
sions of this paper. In the case of thermal noise, the parameter
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that best describes its impact is temperature. In the case of the
processes described in our work, in order for its conclusions
not to be altered, we would have to assume a temperature
low enough so that no thermal creation of kinks or antikinks
occurs during evolution. Moreover, the kink would not be
subject to Brownian movements in a significant way, and the
“phonon dressing” would be negligible. This regime corre-
sponds to the kBT << E regime reported in Refs. [43,44],
where E is the kink energy (kB is Boltzman’s constant); see
also Ref. [3].

This study naturally paves the way for a number of future
possibilities. On the one hand, our focus here was in the inter-
action of sine-Gordon kink with an inhomogeneity. Yet, there
has been a rich literature exploring the resonant interaction of
a φ4 kink with an impurity dating back to Ref. [45] that has re-
cently seen a resurgence of interest in different model variants
and associated phenomenologies [46,47]. Another interesting
direction concerns the exploration of higher-dimensional vari-
ants even of the sine-Gordon variety in order to appreciate
the effects of curvature and impurity geometry on the kink
dynamics; see for some recent examples [40,48]. Such studies
are currently in progress and will be reported in the future.
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APPENDIX: EQUIVALENCE OF THE FIRST TWO
APPROACHES FOR ONE DEGREE OF FREEDOM

REDUCED MODELS

In this section, we will consider a class of Lagrangian
systems, in the absence of dissipation for which we will
demonstrate the equivalence of the first two approaches pre-
sented in the main body of the text for one degree of freedom
effective descriptions for the wave’s center of mass. We as-
sume that stable solutions in the form of solitons are present
in this system. The effective description of the position of the
soliton in this system is specified by the following equation:

∂Leff

∂x0
− d

dt

(
∂Leff

∂ ẋ0

)
= 0. (A1)

Here Leff denotes the effective Lagrangian,

Leff =
∫ +∞

−∞
L(φK , φ̇K , φ′

K )dx. (A2)

As can be seen, it is obtained by integrating the Lagrangian
density of the underlying field theory with respect to the
spatial variable. Here φK = φK [x − x0(t )] denotes the kink
solution and x0(t ) is the collective variable that represents

the position of the kink. We will consider Lagrangians that
contain terms that explicitly break the translational symmetry
of the system. An example Lagrangian of this type has the
form:

L(φK , φ̇K , φ′
K ) = 1

2A(x)φ̇2
K − 1

2F (x)φ′2
K − B(x)V (φK ),

(A3)

where the dot denotes the time derivative and prime denotes
the derivative with respect to space variable x. Here A, B,
and F are arbitrary functions with finite values. In particular,
in previous sections of this work, we considered the cases
for which A = 1 and B = 1. Applying the definition of the
effective Lagrangian (A2) to Eq. (A1) we obtain∫ +∞

−∞

{
∂L
∂x0

− d

dt

(
∂L
∂ ẋ0

)}
dx = 0. (A4)

When calculating the derivatives, we must remember that the
Lagrangian density depends on the x0 variable both through
the field φK , its spatial and time derivatives

∂L
∂x0

= ∂L
∂φK

∂φK

∂x0
+ ∂L

∂φ̇K

∂φ̇K

∂x0
+ ∂L

∂φ′
K

∂φ′
K

∂x0
. (A5)

Next, we will convert the derivatives with respect to the vari-
able describing the position of the kink x0 into derivatives with
respect to the variable ξ = x − x0(t ),

∂L
∂x0

= − ∂L
∂φK

∂φK

∂ξ
− ∂L

∂φ̇K

∂φ̇K

∂ξ
− ∂L

∂φ′
K

∂φ′
K

∂ξ
. (A6)

Similarly, we can calculate the derivative with respect to the
kink velocity, but this time the dependence on the ẋ0 variable
occurs in just one term,

∂L
∂ ẋ0

= ∂L
∂φK

∂φK

∂ ẋ0
+ ∂L

∂φ̇K

∂φ̇K

∂ ẋ0
+ ∂L

∂φ′
K

∂φ′
K

∂ ẋ0
= ∂L

∂φ̇K

∂φ̇K

∂ ẋ0
.

(A7)

The derivative of the field φK with respect to time explicitly
depends in a linear way on the velocity

φ̇K = ∂φK

∂ξ

dξ

dt
= −ẋ0

∂φK

∂ξ
(A8)

and therefore the derivative of φ̇K with respect to velocity is
equal to

∂φ̇K

∂ ẋ0
= −∂φK

∂ξ
. (A9)

The relevant contribution of the derivative of the Lagrangian
with respect to ẋ0 then yields

∂L
∂ ẋ0

= − ∂L
∂φ̇K

∂φ̇K

∂ξ
. (A10)

The obtained derivatives of Lagrangian density with respect
to x0, given by Eq. (A6) and ẋ0, set by Eq. (A10), can be used
in Eq. (A4), yielding

∫ +∞

−∞

{
− ∂L

∂φK

∂φK

∂ξ
− ∂L

∂φ̇K

∂φ̇K

∂ξ
− ∂L

∂φ′
K

∂φ′
K

∂ξ
+ d

dt

(
∂L
∂φ̇K

∂φK

∂ξ

)}
dx = 0. (A11)
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After performing the differentiation with respect to time, we can separate the part that is multiplied by the zero mode and the
other part that we still need to transform∫ +∞

−∞

{
d

dt

(
∂L
∂φ̇K

)
− ∂L

∂φK

}
∂φK

∂ξ
dξ −

∫ +∞

−∞

{
∂L
∂φ′

K

∂φ′
K

∂ξ

}
dx = 0. (A12)

In the second integral, we transfer the derivative with respect to the spatial variable from the second factor to the first one,∫ +∞

−∞

{
∂L
∂φ′

K

∂φ′
K

∂ξ

}
dx =

∫ +∞

−∞

∂

∂x

{
∂L
∂φ′

K

(
∂φK

∂ξ

)}
dx −

∫ +∞

−∞

∂

∂x

(
∂L
∂φ′

K

)
∂φK

∂ξ
dx. (A13)

Since the spatial derivative of φK vanishes at infinity, we can
extract the term that contains multiplication by the zero mode,

∫ +∞

−∞

{
∂L
∂φ′

K

∂φ′
K

∂ξ

}
dx = −

∫ +∞

−∞

∂

∂x

(
∂L
∂φ′

K

)
∂φK

∂ξ
dξ .

(A14)

The integral that is transformed in this way can be reinserted
into Eq. (A12), yielding

∫ +∞

−∞

{
d

dt

(
∂L
∂φ̇K

)
+ ∂

∂x

(
∂L
∂φ′

K

)
− ∂L

∂φK

}
∂φK

∂ξ
dξ = 0.

(A15)

In relativistic notation, the last equation can be written as
follows:∫ +∞

−∞

{
∂μ

(
∂L

∂ (∂μφK )

)
− ∂L

∂φK

}
∂φK

∂ξ
dξ = 0, (A16)

where ∂μ denotes differentiation with respect to space-
time variables xμ = (x0, x1) = (t, x). Note that starting from
Eq. (A1) we obtained Eq. (A16), which defines the method
of projecting onto the zero mode. On the other hand, going
backwards in our calculations from Eq. (A16), we arrive at
the effective Eq. (A1), which means that the method based
on the conservative Lagrangian is equivalent (in the absence
of dissipation) to the method of zero mode projection. Ob-
viously, our considerations apply to the effective model with
one degree of freedom, yet the relevant proof applies for
arbitrary nonlinearity described by V (φ) and arbitrary form
of the heterogeneity in the model.

Finally, let us also notice that naturally, in the case where
α = 0 and � = 0, generally (at the level of field equa-
tions as well as effective equations) the approach based on
the nonconservative Lagrangian is equivalent to the approach
based on the conservative Lagrangian. In this case the non-
conservative contribution R is equal to zero, so Eq. (32)
reduces to Eq. (A1), showing the equivalence of the two
models. Accordingly, in this case, all three approaches are
equivalent.

[1] R. McLachlan, A gallery of constant-negative-curvature
surfaces, Math. Intell. 16, 31 (1994).

[2] J. Frenkel and T. Kontorova, On the theory of plastic deforma-
tion and twinning, Acad. Sci. U.S.S.R. J. Phys. 1, 137 (1939).

[3] Y. S. Kivshar and B. A. Malomed, Dynamics of soli-
tons in nearly integrable systems, Rev. Mod. Phys. 61, 763
(1989).

[4] J. Cuevas-Maraver, P. Kevrekidis, and F. Williams, The Sine-
Gordon Model and Its Applications (Springer, Cham, 2014).

[5] V. Zharnitsky, I. Mitkov, and M. Levi, Parametrically forced
sine-Gordon equation and domain wall dynamics in ferromag-
nets, Phys. Rev. B 57, 5033 (1998).

[6] J. K. Kjems and M. Steiner, Evidence for Soliton Modes in
the One-Dimensional Ferromagnet CsNiF3, Phys. Rev. Lett. 41,
1137 (1978).

[7] L. J. de Jongh, C. A. M. Mulder, R. M. Cornelisse, A. J.
van Duyneveldt, and J. P. Renard, Energy Absorption from
an Oscillating Magnetic Driving Field by Soliton Motions
in the Quasi One-Dimensional Ferromagnet [(CH3)4N]NiCl3

(TMNC), Phys. Rev. Lett. 47, 1672 (1981).
[8] M. Steiner, K. Kakurai, and J. K. Kjems, Experimental

study of the spindynamics in the 1-D-ferromagnet with planar
anisotropy, CsNiF3, in an external magnetic field, Z. Phys. B
53, 117 (1983).

[9] A. Scott, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons
and nonlinear wave equations, SIAM Rev. 26, 293 (1984).

[10] J. Pouget and G. A. Maugin, Solitons and electroacoustic inter-
actions in ferroelectric crystals. I. Single solitons and domain
walls, Phys. Rev. B 30, 5306 (1984).

[11] J. Pouget and G. A. Maugin, Solitons and electroacoustic inter-
actions in ferroelectric crystals. II. Interactions of solitons and
radiations, Phys. Rev. B 31, 4633 (1985).

[12] S. Bugaychuk, L. Kovács, G. Mandula, K. Polgár, and R. A.
Rupp, Wave-mixing solitons in ferroelectric crystals, Radiat.
Eff. Defects Solids 157, 995 (2002).

[13] L. Lam, Solitons and field induced solitons in liquid crystals, in
Solitons in Liquid Crystals, Partially Ordered Systems, edited
by L. Lam and J. Prost (Springer, New York, 1992).

[14] J. Cuevas, L. Q. English, P. G. Kevrekidis, and M. Anderson,
Discrete Breathers in a Forced-Damped Array of Coupled Pen-
dula: Modeling, Computation, and Experiment, Phys. Rev. Lett.
102, 224101 (2009).

[15] B. Josephson, Possible new effects in superconductive tun-
nelling, Phys. Lett. 1, 251 (1962).

[16] P. W. Anderson and J. M. Rowell, Probable Observation of the
Josephson Superconducting Tunneling Effect, Phys. Rev. Lett.
10, 230 (1963).

[17] A. Barone and G. Paternò, Physics and Application of the
Josephson Effect (John Wiley & Sons, New York, 1982).

[18] B. A. Malomed, in The Sine-Gordon Model and Its Appli-
cations: From Pendula and Josephson Junctions to Gravity
and High-Energy Physics, edited by J. Cuevas-Maraver,

034203-16

71



KINK-INHOMOGENEITY INTERACTION IN THE … PHYSICAL REVIEW E 108, 034203 (2023)

P. G. Kevrekidis, and F. Williams (Springer International Pub-
lishing, Cham, 2014), pp. 1–30.

[19] A. I. Braginski, Superconductor electronics: Status and outlook,
J. Supercond. Novel Magn. 32, 23 (2019).

[20] D. W. McLaughlin and A. C. Scott, Perturbation analysis of
fluxon dynamics, Phys. Rev. A 18, 1652 (1978).

[21] A. Golubov, A. Ustinov, and I. Serpuchenko, Soliton dynamics
in inhomogeneous Josephson junction: Theory and experiment,
Phys. Lett. A 130, 107 (1988).

[22] G. Mkrtychyan and V. Shmidt, On the radiation from inho-
mogeneous Josephson junction, Solid State Commun. 30, 783
(1979).

[23] B. A. Malomed, Motion of a kink in a spatially modulated sine-
Gordon system, Phys. Lett. A 144, 351 (1990).

[24] T. Dobrowolski and A. Jarmoliński, Josephson junction with
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In the present work we explore the interaction of a quasi-one-dimensional line kink of the sine-Gordon
equation moving in two-dimensional spatial domains. We develop an effective equation describing the kink
motion, characterizing its center position dynamics as a function of the transverse variable. The relevant
description is valid both in the Hamiltonian realm and in the nonconservative one bearing gain and loss. We
subsequently examine a variety of different scenarios, without and with a spatially dependent heterogeneity. The
latter is considered both to be one dimensional (y independent) and genuinely two dimensional. The spectral
features and the dynamical interaction of the kink with the heterogeneity are considered and comparison with
the effective quasi-one-dimensional description (characterizing the kink center as a function of the transverse
variable) is also provided. Generally, good agreement is found between the analytical predictions and the
computational findings in the different cases considered.

DOI: 10.1103/PhysRevE.109.024205

I. INTRODUCTION

For years, nonlinear field theories have attracted the atten-
tion of many researchers. The reasons for this are twofold.
First, they appear in the description of physical [1–6], bi-
ological [7–9], as well as chemical [10] systems. Second,
unlike linear systems, regardless of the practical context, their
behavior is far more interesting and challenging to explore.
Some of the best-known and well-studied nonlinear field mod-
els are the Korteweg–de Vries (KdV) equation [11,12], the
nonlinear Schrödinger equation [13,14], and the sine-Gordon
model [15]. As shown, these models in 1 + 1 dimensions are
integrable by means of the inverse scattering method [16–18].
The latter allows one, for such integrable models, to obtain,
based on appropriately behaving initial data at spatial infinity,
the configuration of the fields at any later instant of time. In
particular, for appropriately chosen initial data, the explicit
analytical form of the soliton solutions can be obtained and the
dynamics of such fundamental nonlinear coherent structures
can be explored in time. An excellent description of soliton
dynamics can be found in classic textbooks on the subject
[19–21].

The interest of this paper is focused on the sine-Gordon
model. Often, in practical contexts, this model appears in
somewhat modified (i.e., perturbed), potentially relevant ex-
perimentally versions. These modifications have their origin
in the existence of external forcing, dissipation in realistic
physical systems or various types of inhomogeneities [22–27].
These modifications, though, significantly affect the integra-
bility property; however, they do not affect the existence of
kink solutions. Such models are often referred to as nearly
integrable ones. The situation becomes even more compli-
cated when passing from 1 + 1 to 2 + 1, as well as to a larger
number of dimensions. In the case of the sine-Gordon model,

even without any modifications, such higher-dimensional
settings are not integrable within the framework of the inverse
scattering method [28], nor does the model have the properties
that should be satisfied for proving integrability based on
the Painlevé test [29–31]. Despite these difficulties, various
solutions have been constructed, among others, in the form of
a kink front. For instance, a three linked soliton wave-front
solution was found which preserves its initial triangle area
under evolution [32]. Indeed, it is relevant to recall here that
the quasi-one-dimensional (quasi-1D) line kink (i.e., the kink
homogeneous in the transverse direction) is trivially still a
solution in the higher-dimensional setting.

In higher dimensions, part of the challenge towards de-
scribing the dynamics of the solitary waves concerns the fact
that the position of the coherent structure is dependent both on
the time variable and the “transverse” spatial variable. For a
kink, e.g., along the x direction, its center will be y dependent,
while for a radial kink, its center can be varying azimuthally.
Moreover, kink-antikink interactions have also been studied
in the 2 + 1-dimensional model [33]. The behavior of a kink
with radial symmetry has been intriguing to researchers since
the early days of soliton theory [34,35]. A fairly interesting
phenomenon observed for radial configurations is their alter-
nating expansion and contraction. However, it turns out that
in two dimensions such configurations can be destroyed at the
origin [36]. Moreover, the evolution of long-lived configura-
tions of breather form has also been studied in the context
of the sine-Gordon model in 2 + 1 dimensions [37]. Another
interesting potential byproduct of the radial dynamics can be
the formation of breather as a result of collisions with edges
as studied in Ref. [38]. Among other things, the influence
of various types of inhomogeneities and modifications of the
sine-Gordon model on the evolution of the kink front has
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continued to attract the attention of researchers; see, e.g., the
discussions of Refs. [24,39]. New studies devoted to the effect
of inhomogeneities on kink dynamics in 2 + 1-dimensional
systems can also be found in Refs. [40–42].

In the present article, we consider the behavior of the
deformed kink front in the presence of the inhomogeneities.
The way in which these inhomogeneities enter the equation of
motion is motivated by studies conducted in earlier works
by some of the present authors [43] for the 1 + 1 case and
the quasi-1 + 1-dimensional Josephson junction. In this study,
we explore how the existence of the mentioned modifications
of the sine-Gordon equation have its origin in the curvature
of the junction. Our goal, more concretely, is to investigate
the stability of static kink fronts in the presence of spatial
inhomogeneities in the more computationally demanding and
theoretically richer 2 + 1-dimensional setting, extending sig-
nificantly our recent results of the 1 + 1-dimensional case. In
order to do so, we obtain and test an effective reduced model,
leveraging the fundamental nonconservative variational for-
malism presented in Refs. [44,45]. This formalism enables
the formulation of a Lagrangian description of systems with
dissipation. An important part of this approach is the introduc-
tion of a nonconservative potential in addition to conservative
ones giving the possibility of formulating a nonconservative
Lagrangian. The Euler-Lagrange equations are then obtained
based on this Lagrangian. Here our theoretical emphasis is
on utilizing this methodology to provide a reduced (1 + 1-
dimensional) description of the center of the kink as a function
of the transverse variable.

The work is organized as follows. In the next section, we
will define the problem under consideration, namely the evo-
lution sine-Gordon 2 + 1-dimensional kinks in the presence
of heterogeneities in the medium. We will also construct the
effective approximate model obtained based on the noncon-
servative Lagrangian approach. Section III is divided into four
subsections. In the first one, in order to check the obtained
effective model and numerical procedures, we analyze the
motion of the kink front in a homogeneous system but with
dissipation and external forcing. Section III B of this part
contains a study of the front propagation in the presence of
inhomogeneities homogeneous along the transverse direction.
In Sec. III C, we include an analysis of the motion of the
kink in a system whose equation has a form analogous to
that describing a curved Josephson junction but with an in-
homogeneity having a functional dependence on the variable
normal to the direction of kink motion. Section IV contains
an analysis of the stability of the kink in the presence of
the spatial inhomogeneity in the form of potential well and
barrier. In Sec. V, we summarize our findings and present our
conclusions, as well as some directions for further research
efforts. Analytical results on this issue are located in Appen-
dices A, B, and C. The last section contains remarks.

II. MODEL AND THEORETICAL ANALYSIS

A. System description

In the present article we study the perturbed sine-Gordon
model in 2 + 1 dimensions in the form:

∂2
t φ + α∂tφ − ∂x(F (x, y)∂xφ) − ∂2

y φ + sin φ = −�, (1)

where the function F (x, y) represents the inhomogeneity
present in the system, α describes the dissipation caused by
the quasiparticle currents, and � is the bias current in the
Josephson junction setup [39]. For the inhomogeneity, we
will typically assume F (x, y) = 1 + εg(x, y), where ε is a
small control parameter, while g(x, y) reflects the correspond-
ing spatial variation. To preserve the elliptic character of
the spatial portion of the linear operator in the equation we
assume that the |εg(x, y)| is for any x and y distinctively
smaller than 1. When considering the motion of a kink in
this two-dimensional system, we assume periodic boundary
conditions along the second dimension parametrized by the
variable y,

φ(x, ymin, t ) = φ(x, ymax, t ),

∂tφ(x, ymin, t ) = ∂tφ(x, ymax, t ).

The initial velocity of the kink when � is equal to zero is
selected arbitrarily. On the other hand, if both quantities α and
� are different from zero, then the initial velocity is assumed
equal to

us = 1√
1 + (

4α
π�

)2
. (2)

This value corresponds to the movement at the stationary
speed obtained in the classic work of Ref. [22]. We use this
value because at the initial time the kink is sufficiently far
away from the inhomogeneity. With such a large distance at
the initial position of the front, the F function is approxi-
mately equal to 1. In this work, we will describe the movement
of the kink front, the shape of which will have different forms
at the initial instant and which will encounter different types
of heterogeneities during propagation. We propose an effec-
tive description of this movement within a 1 + 1-dimensional
model, characterizing the center motion as a function of the
transverse variable that we now expand on. In our work, we
compare the results of the original model and the effective
model to determine the limits of applicability of the proposed
simplified description.

B. Nonconservative Lagrangian model

Due to the existence of dissipation in the studied system,
we will use the formalism described in the paper [44,45]. The
proposed approach introduces a nonconservative Lagrangian
in which the variables describing the system are duplicated
and an additional term is added to the Lagrangian to account
for the nonconservative forces. The variational principle for
this Lagrangian only specifies (and matches across acceptable
trajectories) the initial data. On the other hand, at the final
time, the coordinates and velocities of the two paths are not
fixed but for both sets of variables are equal. Doubling the
degrees of freedom has this consequence that in addition to
the potential function V , one can include an arbitrary func-
tion, R (called nonconservative potential), that couples the
two paths. Nonconservative forces present in the system are
determined from the potential R. The R function is respon-
sible for the energy lost by the system. This formalism, in
Ref. [26], was applied to describe the PT -symmetric variants
of field theories (bearing balanced gain and loss). The referred
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modification introduced into the field models simultaneously
preserves the parity symmetry (P, i.e., x → −x) and the
time-reversal symmetry (T , i.e., t → −t). In particular, this
approach has been applied to solitonic models such as φ4 and
sine-Gordon.

In the current work, we consider the system described by
Eq. (1). For α = 0 and � = 0, this equation can be obtained
from the Lagrangian density

L(φ, ∂tφ, ∂xφ, ∂yφ) = 1
2 (∂tφ)2 − 1

2F (x, y)(∂xφ)2

− 1
2 (∂yφ)2 − V (φ). (3)

The nonconservative Lagrangian density is formed from the
Lagrangian density (3) by doubling the number of degrees of
freedom,

LN =L(φ1, ∂tφ1, ∂xφ1, ∂yφ1)

− L(φ2, ∂tφ2, ∂xφ2, ∂yφ2) + R. (4)

Much more convenient variables to describe our system with
dissipation are the field variables φ+ and φ−. The relation-
ship between the variables φi, (i = 1, 2) and φ+, φ− is of
the form φ1 = φ+ + 1

2φ− and φ2 = φ+ − 1
2φ−. The main ad-

vantage of using new variables is that in the physical limit
(indicated by the characters PL) the φ+ variable reduces to
the original variable φ while the φ− variable becomes equal
to zero and thereby disappears from the description. In the
new variables, the nonconservative Lagrangian density is of
the form

LN = (∂tφ+)(∂tφ−) − F (x, y)(∂xφ+)(∂xφ−) − (∂yφ+)(∂yφ−)

− V

(
φ+ + 1

2
φ−

)
+ V

(
φ+ − 1

2
φ−

)
− αφ−∂tφ+ − �φ−. (5)

The variational scheme proposed in the paper [44] leads to a
Euler-Lagrange equation,{

∂μ

[
∂LN

∂ (∂μφ−)

]
− ∂LN

∂φ−

}
PL

= 0, (6)

where the subscript μ denotes the partial derivatives with re-
spect to the variables xμ = (t, x, y). A particularly convenient
form of the field equation is the one that separates the effect
of the existence of a nonconservative potential from the rest
of the equation,

∂μ

[
∂L

∂ (∂μφ)

]
− ∂L

∂φ
=
{

∂R
∂φ−

− ∂μ

[
∂R

∂ (∂μφ−)

]}
PL

. (7)

Inserting the Lagrangian density (3) into the above equa-
tion and using the form of the function R = −αφ−∂tφ+ −
�φ−, we reproduce Eq. (1).

So far, our calculations are exact (i.e., no approximations
have been made). Hereafter, we will use a kinklike ansatz
in the field φ(x, y, t ), so as to construct an effective (ap-
proximate) 1 + 1-dimensional reduced model describing the
dynamics of the kink center. This is a significant step in the
vein of dimension reduction; however, it comes at the expense
of assuming that the entire field consists of a fluctuating kink
(i.e., small radiative wave packets on top of the kink cannot

be captured). Nevertheless, this perturbation in the spirit of
soliton perturbation theory [24] has a time-honored history of
being successful in capturing coherent structure dynamics in
such models.

To implement our approach, we introduce a kink ansatz of
the form φi(t, x, y) = K (x − Xi(t, y)) = 4 arctan(ex−Xi ) into
the Lagrangian (5) of the field model in 2 + 1 dimen-
sions and then integrate over the spatial variable x. The
resulting effective nonconservative Lagrangian density is
as follows:

L = L1 − L2 + R, R = R1 + R2, (8)

where the effective conservative Lagrangian densities are

L1 = 1

2
M(∂t X1)2 − 1

2

∫ +∞

−∞
F (x, y)[K ′(x − X1)2]dx

− 1

2
M(∂yX1)2, L2 = 1

2
M(∂t X2)2

− 1

2

∫ +∞

−∞
F (x, y)[K ′(x − X2)2]dx − 1

2
M(∂yX2)2,

and we denote the mass of the kink as M = ∫ +∞
−∞ K ′(x −

Xi )2dx = 8. On the other hand, the two parts of the noncon-
servative effective potential are, respectively, equal to

R1 = 1

2
α

∫ +∞

−∞
[K (x − X1) − K (x − X2)]

× [K ′(x − X1)∂t X1 + K ′(x − X2)∂t X2]dx,

R2 = −�

∫ +∞

−∞
[K (x − X1) − K (x − X2)]dx.

By analogy with Eq. (7), the (approximate) effective field-
theoretic equation for X (y, t ) is of the form

∂t

[
∂L

∂ (∂t X )

]
+ ∂y

[
∂L

∂ (∂yX )

]
− ∂L

∂X

=
{

∂R

∂X−
− ∂t

[
∂R

∂ (∂t X−)

]
− ∂y

[
∂R

∂ (∂yX−)

]}
PL

, (9)

where we use the variables X+ = (X1 + X2)/2 and X− =
X1 − X2 to write the nonconservative potential. Note that the
left-hand side of the equation describes a situation in which
there are no nonconservative forces, while the right-hand side
introduces dissipation and forcing into the system. In Eq. (9),
L is a simple conservative Lagrangian density written in terms
of the physical variable X ,

L = 1

2
M(∂t X )2 − 1

2
ε

∫ +∞

−∞
g(x, y)[K ′(x − X )]2dx

− 1

2
M(∂yX )2. (10)

In this formula, we used the decomposition of the F function
into a regular part and a small perturbation, i.e., F (x, y) = 1 +
εg(x, y). On the other hand, the function R appearing on the
right-hand side of the equation is written in auxiliary variables
X+ and X−. Note that the left-hand side of Eq. (9) contains the
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full information about the inhomogeneities present in the system,

M∂2
t X − ε

∫ +∞

−∞
g(x, y)K ′(x − X )K ′′(x − X )dx − M∂2

y X =
{

∂R

∂X−
− ∂t

[
∂R

∂ (∂t X−)

]
− ∂y

[
∂R

∂ (∂t X−)

]}
PL

. (11)

In order to calculate the right-hand side of the effective field equation, we rewrite the nonconservative potential R to the X±
variables,

R1 = 1

2
α

∫ +∞

−∞

[
K

(
x − X+ − 1

2
X−

)
− K

(
x − X+ + 1

2
X−

)]
×
[

K ′
(

x − X+ − 1

2
X−

)(
X+t + 1

2
X−t

)
+ K ′

(
x − X+ + 1

2
X−

)(
X+t − 1

2
X−t

)]
dx,

R2 = − �

∫ +∞

−∞

[
K

(
x − X+ − 1

2
X−

)
− K

(
x − X+ + 1

2
X−

)]
dx.

We then determine the classical limit of the right-hand side of Eq. (11). In the course of the calculations, we use the asymptotic
values of the kink solution. The Euler-Lagrange equation defining the effective 1 + 1-dimensional model is thus identified as

M∂2
t X − M∂2

y X − ε

∫ +∞

−∞
g(x, y)K ′(x − X )K ′′(x − X )dx = −αM∂t X + 2π�. (12)

Let us consider the function g being the product of g(x, y) = p(x)q(y), where p(x) corresponds to the inhomogeneity occurring
across the direction of the kink motion and q(y) may represent the gaps occurring within this inhomogeneity along the transverse
direction. The function q(y) does not depend on x and therefore we can exclude it before the sign of the integral and perform the
explicit integration of the expression containing the function p(x). In the first example, the p function is the difference of the step
functions p(x) = 1

2 [�(x + h
2 ) − �(x − h

2 )]. This form of the p function makes the inhomogeneity exactly localized between the
points x = −h/2 and x = h/2. The Euler-Lagrange equation in this case is

∂2
t X + α∂t X − ∂2

y X + 1

8
εq(y)

[
sech

(
h

2
+ X

)2

− sech

(
h

2
− X

)2
]

= 1

4
π�. (13)

The second example concerns inhomogeneity described by a continuous function

p(x) = 1

2

[
tanh

(
x + h

2

)
− tanh

(
x − h

2

)]
. (14)

For large values of h, this function can be successfully approximated by a combination of step functions of the form p(x) =
1
2 [�(x + h

2 ) − �(x − h
2 )]. However, for smaller values of h, some differences are observed. The effective field equation in this

case has a slightly more complex form,

∂2
t X + α∂t X − ∂2

y X + 1

2
εq(y)

[(
h
2 + X

)
coth

(
h
2 + X

) − 1

sinh2
(

h
2 + X

) −
(

h
2 − X

)
coth

(
h
2 − X

) − 1

sinh2
(

h
2 − X

) ]
= 1

4
π�. (15)

This effective 1 + 1-dimensional model is the basis for com-
parisons with predictions of the initial field Eq. (1) in 2 + 1
dimensions.

III. NUMERICAL RESULTS

This section will be devoted to the comparison of the pre-
dictions resulting from the effective 1 + 1-dimensional model
and the full 2 + 1-dimensional field model. Our goal is to ex-
amine the compatibility of the two descriptions and determine
the range of applicability of the approximate model.

A. Kink propagation in the absence of inhomogeneities

Initially, we performed tests to check the compatibility of
the two descriptions for a homogeneous system, i.e., for a
system for which the parameter representing the strength of
inhomogeneity ε is equal to zero. The first check was carried
out for an initial condition with a kink of the form of a straight
line perpendicular to the x direction, i.e., direction of move-
ment of the kink. The propagation of the kink front is shown

in Fig. 1. The left panel shows the results obtained from the
field model of Eq. (1). The blue color represents the area for
which φ < π , and the yellow color corresponds to φ > π . The
areas are separated by the red line φ(t, x, y) = π . We identify
this line with the kink front. This panel shows the location
of the front sequentially at moments t = 0, 30, 60, 90, 120.
Each snapshot on the left panel shows a sector of the system
located in the interval y ∈ [−30, 30] with an appropriately
selected x interval. It should be noted that the simulations,
nevertheless, were conducted on a much wider interval x, i.e.,
x ∈ [−70, 70]. At the ends of the interval (i.e., for x = ±70),
Dirichlet boundary conditions corresponding to a single-kink
topological sector were assumed. The right panel contains a
comparison of the evolution of the kink front obtained from
the field equation (solid red line) and that obtained from the
approximate model (dotted blue line) given by Eq. (15). The
comparison was made at instants identical to those on the left
panel. Due to the very good agreement, the blue line is barely
visible. The simulation was performed for an initial velocity
of the kink with u0 = us = 0.229339. It can be verified that
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FIG. 1. Comparison of the position of the center of the kink for the results obtained from the full field model and the approximate model.
On the left the parameters in the figures shown have values u = 0.25, � = 0, and α = 0 and on the right � = 0.003, α = 0.01 while velocity
is equal to us according to (2). In both cases ε = 0. The dashed red line is the position of the center of the kink according to the approximate
model, while the blue line corresponds to the center of the kink from the solution of the full field model.

this is the steady-state velocity resulting from Eq. (2) for the
dissipation constant α = 0.01 and bias current � = 0.003. In
this work, whenever � �= 0 and α �= 0 we take the steady-state
velocity resulting from Eq. (2) as the initial velocity. It is
worth noting that if we were to assume a velocity below the
steady-state velocity during motion, then this velocity will
increase to the steady-state value due to the existence of an
unbalanced driving force in the form of a bias current. On
the other hand, if we assume an initial velocity above the
stationary velocity, then due to the unbalanced dissipation
there will be a slowdown of the front to the stationary ve-
locity. Finally, the initial position of the kink is taken equal to
X0 = −10.

A slightly different situation is illustrated in Fig. 2. The first
difference is that the bias current is zero � = 0, and so instead
of using Eq. (2) we can choose the initial velocity arbitrarily
(here we take u0 = 0.25). The second difference is that the
shape of the front is deformed at the initial time. Here we
assume the sinusoidal form of the deformation described by

the formula

X (y, t = 0) = X0 + λ

N∑
n=1

sin

(
2πny

Ly

)
. (16)

where Ly = 60 is the width of the system along the direction
of the y variable. In this figure we show the evolution of
the initial configuration with N = 2. This is selected with
the mindset that any functional form of X (y, t = 0) should,
in principle, be decomposable in (such) Fourier modes. The
value of X0 as before is X0 = −10, while the amplitude of the
deformation is λ = 0.5. The value of the dissipation constant
in the system is α = 0.01. As before, there are no inhomo-
geneities in the system, i.e., ε = 0. The method of presenting
the results is similar to that used in Fig. 1. The left panel
illustrates the field configurations obtained from Eq. (1), se-
quentially at instants t = 0, 30, 60, 90, 120. The red solid line
represents the kink front at the listed moments of time. On the
right panel, the kink positions shown on the left panel (red
lines) are compared with those obtained from the effective

FIG. 2. Comparison of the position of the center of the kink for the results obtained from the full field model and the approximate model
with a modification of the initial position of the kink according to Eq. (16) for N = 2. On the left the parameters in the figures shown have
values u = 0.25, � = 0, and α = 0 and on the right � = 0.003, α = 0.01, and us. In both cases ε = 0 and λ = 0.5.
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FIG. 3. Comparison of the position of the center of the kink for the results obtained from the full field model and the approximate model.
On the left the velocity has value u = 0.13, and on the right � = 0.00135, α = 0.01, and us. In both cases ε = 0.01.

model (15). The results of the effective model are represented
by blue dashed lines. As can be seen, until t = 120 there are
no apparent differences between the results of the field model
and the approximate model.

B. Propagation of the front in the presence of an
x-axis-directed inhomogeneity

In this subsection, we will assume that the parameter
ε in Eqs. (1) and (15) is nonzero. Such an assumption
means that there is inhomogeneity in the system. In this
work, we will describe the effect of inhomogeneity described
by the function g(x, y) = p(x)q(y), where p(x) is given by
Eq. (14). In this first introduction of the inhomogeneity,
we will assume that q(y) = 1, which means that the in-
homogeneity is in the form of an elevation of height ε,
orthogonal to the x direction (which defines the direction of
the kink movement). The spatial size of the inhomogeneity
along the x direction is approximated by the parameter h
appearing in Eq. (14). In the simulations in this section, we
assume h = 10 and ε = 0.01. We study three types of kink
dynamics.

In the first case, we consider the reflection of the kink from
a barrier. The course of this process is shown in Fig. 3. The
case of reflection in the absence of external forcing (� = 0)
and dissipation (α = 0) is shown in the left panel. The initial
condition in this case is a straight kink front with a velocity
u = 0.13. As in the previous section, the kink front is iden-
tified with the line φ(t, x, y) = π [obtained from the field
Eq. (1)]. The front is represented by the red line. Regions
with φ(t, x, y) < π are once again represented as blue areas
and φ(t, x, y) > 0 as yellow. On the other hand, the position
of the front determined from Eq. (15) is represented by the
blue dashed line. The gray area represents the position of the
inhomogeneity. The figure shows the position of the front at
instants t = 0, 60, 120, 180, and 240. The kink at moments
t = 0, 60, 120 approaches the inhomogeneity while between
moments t = 120 and t = 180 it is reflected and turns around.
Finally, at instants between t = 180 and t = 240 it is already
moving towards the initial position. As can be seen, the cor-
respondence of the two descriptions, namely the ones based
on Eq. (1) and on Eq. (15), is very good, until t = 120, while

above this value we observe slight deviations. The right panel
shows the same process in the case of occurrence of a dissi-
pation α = 0.01 and forcing � = 0.00135 in the system. The
course of the front at the same moments as in the left panel
also shows very good agreement of the approximate model
(15) with the initial model (1), also for t = 240. In this figure,
the initial velocity of the front is chosen based on the formula
(2), i.e., as the stationary velocity. It should be mentioned that
the bouncing process in this case is slightly more complex
and has an identical (effectively one-dimensional) nature to
that described in the one-dimensional case in the paper [43].
It consists of multiple (damped) reflections from the barrier,
which eventually ends up stopping before the barrier. As was
shown in Ref. [43], this reflects the presence of a stable spiral
point at such a location which asymptotically attracts the kink
towards the relevant fixed point.

The second case is shown in Fig. 4. The left panel shows
the movement of a kink with an initial velocity u = 0.16
significantly exceeding the critical speed. In this case, slight
deviations are already observed for t = 120. On the other
hand, the case with dissipation is presented in the right panel.
This figure shows a kink front with an initial speed equal to the
stationary velocity determined for dissipation α = 0.01 and
forcing � = 0.00185. In this case, the correspondence of the
description obtained from Eq. (1) and Eq. (15) are striking up
to t = 240. The results obtained in this section are analogous
to those described in the paper [43], as the effective motion
of the kink is practically one dimensional and the transverse
modulation neither plays a critical role to nor destabilizes (as
is, e.g., the case in nonlinear Schrödinger type models [46])
the longitudinal motion.

C. Kink propagation for inhomogeneities dependent
on both variables

In this section we will consider some examples of hetero-
geneities bearing a genuinely two-dimensional character, i.e.,
having a nontrivial dependence not only on the x variable
initially aligned with the direction of movement of the kink
but also on the y variable, along which the front is initially
homogeneous.
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FIG. 4. Comparison of the position of the center of the kink for the results obtained from the full field model and the approximate model.
On the left the velocity has value u = 0.16, and on the right � = 0.00185, α = 0.01, and us. In both cases ε = 0.01.

1. Barrier-shaped inhomogeneity

The first example is described by the function F (x, y) =
1 + εg(x, y) = 1 + εp(x)q(y). The shape of this function is
shown in Fig. 5. In this case, the function p(x) is given by
formula (14) while q(y) has the form:

q(y) = 1

2

[
tanh

(
y + d

2

)
− tanh

(
y − d

2

)]
. (17)

We will consider two cases. In the first case, the kink
front passes over the inhomogeneity. In the second case, it is
stopped by the inhomogeneity. To be more precise, the kink,
in the absence of dissipation and forcing, bounces and returns
towards its initial position, while when dissipation and forcing
are nonzero the kink stops in front of the inhomogeneity due
to the emergence of a stable fixed point there. The results
of comparing the initial model (1) with the effective model
(12) are very good, as can be seen in Fig. 6. In the simu-
lations, we assumed a parameter describing the strength of
the inhomogeneity equal to ε = 0.1. The left panel shows the
interaction of the front with the inhomogeneity in the absence
of dissipation and forcing. The initial condition in this case
is a straight front with a velocity of u = 0.14. It can be seen
that in the course of the evolution the front deforms (the kink
bends around the inhomogeneity, which is represented in the
figure as a gray area) and then overcomes it. After crossing
the inhomogeneity, the tension of the string (the front of the

kink) causes it to vibrate, i.e., it excites a transverse mode
of the “kink filament.” Obviously, we must remember that
local perturbations of the φ-field profile can slightly change
the distribution of energy density along the kink front. As a
consequence of the existence of tension, the string tends to
straighten but excess kinetic energy causes it to vibrate in the
direction of the motion of the front, in the absence of dissipa-
tion and drive. This oscillation persists for a long time because
the mechanism of energy reduction associated with its radia-
tion is not very effective. On the other hand, the right panel
shows an analogous process in the case where in the system
we have a forcing of � = 0.0018 and a dissipation character-
ized by the coefficient α = 0.01. In this case, the initial speed
is the stationary velocity determined by the formula (2). The
course of the process and the results are analogous to the case
without dissipation, i.e., we observe local changes in shape
that are similar to the left panel. Nevertheless, after passing
over the inhomogeneity, we observe damped vibrations that
ultimately lead to straightening of the front, as a result of
this damped-driven system’s possessing of an attractor (and
contrary to the scenario of the conservative Hamiltonian case).
The results shown in the figures have also been presented in
the form of animations in the associated links. Since in the
absence of forcing and dissipation, the mechanism of get-
ting rid of excess energy through radiation is not sufficiently
effective, extending the animation time in this case did not
lead us to times at which the transverse oscillations of the

FIG. 5. Left panel presents peak-shaped inhomogeneity F (x, y), while the right panel shows its section along a line x = 3. Both parameters
h and d are equal to 6.

024205-7

79



GATLIK, DOBROWOLSKI, AND KEVREKIDIS PHYSICAL REVIEW E 109, 024205 (2024)

FIG. 6. Passing over heterogeneity. In the left panel, we show the system without forcing and dissipation. The kink front has an initial
velocity equal to u = 0.14. The right panel shows an analogous process in a system with forcing � = 0.0018 and dissipation α = 0.01. In both
images the gray area represents the inhomogeneity. Here we have that ε = 0.1. The animations are available at [47].

kink front would disappear. The situation is different when
there is dissipation in the system. The animation conducted
for long times in the latter setting shows that the kink front
straightens.

In the second case, shown in Fig. 7, we take a large value
of the inhomogeneity strength ε = 0.5. Accordingly, even a
front with a velocity slightly greater than the velocity re-
ported in the previous figure is not sufficient to overcome
the inhomogeneity. The left panel shows the process of in-
teraction of a front with initial velocity u = 0.16 with the
inhomogeneity represented by the gray area of the figure.
As can be seen during the interaction the front is attempting
to pass over the inhomogeneity; however, it finally bounces
back towards its initial position. Despite the large value of
ε, and the substantial deformation of the kink filament, the
agreement between the original model (1) and the effective
model (12) remains very good. The right panel shows an
even more interesting interaction of the kink front with the
inhomogeneity. In the figure, in addition to the value of the
parameter ε = 0.5, a forcing of � = 0.0013 and a dissipation
coefficient of α = 0.01 are assumed. Initially the front moving
towards the inhomogeneity experiences a deformation. Then,

a series of damped reflections of the front from the barrier
occur. During the reflections and returns, deformations of
the entire front occur having the form of vibrations in the
direction of motion. The subsequent turning of the front in the
direction of the barrier is a consequence of the existence of an
external forcing. Vibrations are damped due to the presence
of dissipation in the system. What is interesting here is the
final shape of the front, which is a consequence of multiple
factors. The first factor is, of course, the presence of a barrier
that constrains the movement of the front and leads to an ener-
getically induced bending of the kink filament. The second is
the presence of forcing, which in the middle is balanced by the
presence of the barrier. The situation is different at the ends,
where the front does not have “feel” the barrier (and hence
is once again straightened). The combination of these factors
with the geometric distribution of our inhomogeneity leads
to a stable equilibrium analogous to the 1 + 1-dimensional
case in Ref. [43]. Yet the present case also features a spa-
tial bending of the kink profile, given the geometry of the
heterogeneity and the tendency to shorten the length of the
kink, in a way resembling the notion of string tension at the
front.

FIG. 7. Reflection (left) and stopping (right) on inhomogeneity. In the left panel, the system without forcing and dissipation is shown. The
kink front has an initial velocity equal to u = 0.16. The right panel shows an analogous process in a system with forcing � = 0.0013 and
dissipation α = 0.01. In both pictures, the gray area represents the inhomogeneities with ε = 0.5. The animations are available at [47].
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FIG. 8. Passing over the well. In the left panel, the system without forcing and dissipation. The kink front has an initial velocity equal
to u = 0.14. The right panel shows an analogous process in a system with forcing � = 0.0018 and dissipation α = 0.01. In both images the
gray area represents the region of inhomogeneity. The parameter describing the depth of the well has a value of ε = 0.1. The animations are
available at [47].

2. Heterogeneity in the form of well

A slightly different type of inhomogeneity is a potential
well. In this section, the well is obtained by replacing g(x, y)
in the formula F (x, y) = 1 + εg(x, y) = 1 + εp(x)q(y) by
−g(x, y) and preserving the form of functions p(x) and q(y).
In the relevant dip (rather than bump) of the heterogeneity, the
parameters are taken as h = 6 and d = 6. As in the previous
section, we will consider two cases. In the first case, the front
passes over the well, and in the second it is stopped by it.

Figure 8 shows the case of a front passing over a well. The
left panel describes the case of no forcing and dissipation. The
parameter describing the depth of the well is ε = 0.1. The
initial velocity of the front is u = 0.14 in this case. A straight
front during its approach to the inhomogeneity deforms in
the middle part which is related to the attraction by the well
(cf. with the opposite scenario of the barrier case explored
previously). In the course of crossing the well the situation
reverses. Due to the attraction by the inhomogeneity, the cen-
tral part of the kink advances faster (than the outer parts).
Then we observe the kink moving outside the well, which, in
turn, results in vibrations along the direction of motion. These
vibrations persist (in the Hamiltonian case) for a very long
time due to the lack of dissipation in the system. The right
panel shows the same process, but when in the system there is
dissipation α = 0.01 and forcing � = 0.0018. The parameter
describing the depth of the well is, as before, ε = 0.1. The
course of the interaction is similar to that in the left panel. The
main difference is that the vibration that the front performs
after the impact visibly decays and eventually disappears due
to the existence of dissipation in the system. Interestingly, in
both cases, the agreement of the approximate model with the
original one is very good even for long times. As before, we
include animations showing the interaction process both in the
case without dissipation and with dissipation.

The situation becomes even more interesting in the case
shown in Fig. 9. In this case, we observe the process of
interception of the front by the potential well. The left panel
of this figure shows the process of interaction in the absence
of forcing and dissipation. The depth of the well here is quite

large because it is determined by the parameter ε = 0.5. The
initial velocity of the kink front is u = 0.16. As in the previous
figure, initially, due to the attraction of heterogeneity, the
front in its central part is pulled into the well. Then there are
long-lasting oscillations and deformations of the front, which
is the result of interaction with the well. Due to the large value
of the parameter ε, the approximation model is less accurate
for long times, i.e., ones exceeding t = 100.

The right panel illustrates an identical process, i.e., inter-
ception of the front by the well but with both dissipation (α =
0.01) and external forcing (� = 0.0013) in the system. As in
the left panel, the front is initially, in the middle part, pulled
into the well and then repeatedly deformed due to interaction
with heterogeneity. The important change, once again, is that
the deformations of the front, due to dissipation, become grad-
ually smaller. Ultimately, the kink becomes static, adopting a
shape different from a straight line, due to the presence of (and
attraction to) the heterogeneity. The final shape of the kink
is a compromise between the forcing of � and the tension
of the kink filament. Tension, as already mentioned tends to
minimize the length of the front while the forcing pushes the
free ends of the front to the right. Due to the large value of
the ε parameter, the approximate model has a more limited
predictive power for sufficiently long times, e.g., t > 1000.
The discrepancies between the two descriptions seem to have
a time shift nature. However, the presence of dissipation leads
to a gradual reduction in the kink’s distortion and thus to
the differences between the initial model and the approximate
one. It turns out that the final configuration is very proximal
between the two models. We have put the course of the impact
process in the form of an animation in the additional materials.

IV. LINEAR STABILITY OF THE DEFORMED
KINK FRONT

In this section we consider the model defined by Eq. (1)
with α = 0 and � = 0,

∂2
t φ − ∂x(F (x, y)∂xφ) − ∂2

y φ + sin φ = 0. (18)
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FIG. 9. Intercepting of the kink front through a potential well. On the left, the case without dissipation and forcing is shown. The initial
velocity of the front is u = 0.16. On the right, the dissipation is α = 0.01 while the forcing is � = 0.0013. In both cases, the parameter ε is
equal to 0.5. The animations are available at [47].

In the framework of this model we study the stability of the
deformed static kink solution φ0(x, y) satisfying the equation

−∂x(F (x, y)∂xφ0) − ∂2
y φ0 + sin φ0 = 0. (19)

This study of the spectrum of the kink will help us further
elucidate the internal vibrational modes of the kink filament
observed and discussed in the previous sections. Indeed,
whenever kink vibrations are excited, they can be decomposed
on the basis of oscillations of the point spectrum of the kink
discussed below (while the extended modes of the continuous
spectrum represent the small amplitude radiative wave pack-
ets within the system). Moreover, this spectral analysis can
be leveraged to appreciate which configurations are unstable
(e.g., the ones where the kink is sitting on top of a barrier)
versus which ones are dynamically stable (e.g., when the kink
is trapped by a well).

We introduce into Eq. (19) a configuration φ consisting of
the solution φ0 and a small correction ψ , i.e., φ(t, x, y) =
φ0(x, y) + ψ (t, x, y). Moreover, we assume a separation of
variables of the perturbation in terms of its time and space
dependence as ψ (t, x, y) = eiωtv(x, y). In a linear approxima-
tion with respect to the correction, we obtain

− ∂x(F (x, y) ∂xv(x, y)) − ∂2
y v(x, y) + (cos φ0) v(x, y)

= λv(x, y), (20)

where λ = ω2. We can briefly write this equation using the L̂
operator, which includes a dependence on the analytical form
of inhomogeneity

L̂v + cos φ0 v = λv. (21)

The above equation has the character of a stationary
Schrödinger equation with a potential defined by the cosine
of the straight kink front configuration φ0 intercepted by the
inhomogeneity. An important feature of this configuration, is
that, similarly to the L̂ operator, it depends in part on the form
of the inhomogeneity. In the region of heterogeneity, it has an
analytical form different from that of the free kink (denoted
φK in this work). This modification of the analytical form of

the field is a consequence of the interaction of the kink with
the inhomogeneity. Based on this equation, an analysis of the
excitation spectrum of the static kink captured by the inhomo-
geneity was carried out. The results can be found in Figs. 10
and 11. Figure 10 shows with dotted lines the dependence of
the squares of the frequency on the parameter d describing the
transverse size of the inhomogeneity. In the figure, the values
of the parameters are assumed to be h = 4 and ε = 0.1 (in ad-
dition, the size of the system is determined by the values Lx =
30 and Ly = 30). The lowest energy state in this diagram is the
nondegenerate state and it corresponds to the zero mode of the
sine-Gordon model without inhomogeneities. In addition, the
figure includes the fit obtained for this state using an energy
landscape study of the one-degree-of-freedom effective model
(see Appendix C for a description of this approach). Note that
up to a value of about 0.4 of the d/Ly ratio, this simple model
captures the course of the numerical dependence well. Above
that lie the excited states. At the scale adopted in the figure,

FIG. 10. Squared eigenfrequencies λ = ω2 calculated for the
static kink front configuration (trapped by inhomogeneity with the
form of a well) depending on the value of d/Ly for h = 4, ε = 0.1.
The red line represent the eigenvalue of the ground state obtained
from the approximate model described in Appendix C.
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FIG. 11. Detailed graph of squared eigenfrequencies λ = ω2 calculated for the static kink configuration trapped by a well (without
dissipation and bias current) depending on the value of d/Ly for ε = 0.01 on the left and ε = 0.1 on the right. In both cases ε = 0.1, h = 4.
The lines represent the analytical results obtained in Appendix B.

it is almost imperceptible that each line actually consists of
two lines running side by side. Note that the increase in the
value of λ for the excited states is similar to the increase in the
value for the ground state, as indicated by the dashed lines
parallel to the red line obtained for the ground state based
on the approximate model (Appendix C). Above a value of
unity, we encounter the continuous spectrum of the problem.
A more detailed plot is shown in Fig. 11. In this figure, it is
much clearer that the discrete states (except for the ground
state) are described by double lines. The spectrum is shown
here for two values of ε. The results for ε = 0.01 are shown
in the left panel, while those for ε = 0.1 (as in the previous
figure) are shown in the right one. The other parameters are
identical. The figure also shows the predictions obtained from
the degenerate perturbation theory analysis presented in Ap-
pendix B. It can be seen that the analytical result reflects very
well the course of the line representing the ground state (espe-
cially for small values of ε). The course of the lower excited
states is also quite well reproduced. For higher excited states,
the similarity of the numerical result to the analytical one is
qualitative.

In order to obtain an analytical estimate of the spectrum of
linear excitations of the configuration under study, we need,
among other things, the form of deformation χ of the kink
front with respect to the free kink. The method of obtaining
the χ function is presented in Appendix A. To check the
analytical formulas obtained by approximating, for example,
the function χ in a piecewise form, we performed numer-
ical calculations of the integrals contained in Appendix B
based on the approximation (A7). The results are presented

in Fig. 12, which was made for the same parameters as in
Fig. 11. As can be seen, the improvement in compatibility
occurs for the lowest eigenvalues. Specifically, it takes place
for the parameter d/Ly close to 1. For higher eigenvalues, the
situation does not significantly improve. It turns out that for
higher excited states the analytical formula overestimates the
separation of states (corresponding to the degenerate states of
the zero approximation), while the result obtained with the fit
(A7) underestimates this gap. In any event, given the relatively
small size of the discrepancy, we do not dwell on this further.

On the other hand, the results for a barrier-like inhomo-
geneity of the form of Fig. 5 are presented in Fig. 13. The
parameters on the left and right panels of this figure are
identical and are h = 4, ε = 0.1, Lx = 30, and Ly = 30. The
figures differ only in scale. This time, the configuration of the
kink lying on top of the destabilizing barrier is found to indeed
be unstable, which is manifested by the occurrence of a mode
with a negative value of λ (i.e., an imaginary eigenfrequency).
This mode corresponds to the translational mode, reflecting
in this case the nature of the effective potential (i.e., a barrier
creating an effective saddle point). Such a value is a mani-
festation of the kink drifting away from inhomogeneity. The
other modes are quite similar in nature to the excited modes in
the case of potential well, which has its origin in the adopted
periodic boundary conditions.

V. CONCLUSIONS AND FUTURE CHALLENGES

In the current article we studied the behavior of the kink
front in the perturbed 2 + 1-dimensional sine-Gordon model.
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FIG. 12. Detailed graph of squared eigenfrequencies λ = ω2 calculated for the static kink configuration trapped by a well (without
dissipation and bias current) depending on the value of d/Ly for ε = 0.01 on the left and ε = 0.1 on the right. In both cases h = 4. The
lines represent the results of Appendix B with integrals determined numerically for (A7).

The particular type of perturbation is motivated by the study of
the dynamics of gauge-invariant phase difference in one- and
quasi-one-dimensional curved Josephson junction. We also
obtained an effective 1 + 1-dimensional model describing the
evolution of the kink front based on the nonconservative La-
grangian method [26,44]. First we tested the usefulness of
the approximate model. More concretely, we examined the
behavior of the kink starting from the case when there are no
inhomogeneities in the system. The agreement between the
results of the original and the effective model turned out to be
very satisfactory. Subsequently, we explored the movement

of the front in a slightly more complex situation. Namely,
we examined inhomogeneities of shape independent of the
variable transverse to the direction of movement of the front,
i.e., the y variable. The results obtained here are in full analogy
with the 1 + 1-dimensional model studied earlier [43]. These
studies can be directly applied to the description of quasi-one-
dimensional Josephson junctions.

The most interesting results were obtained for studies
of the behavior of the front in the presence of inhomo-
geneities with shape genuinely dependent on both spatial
variables. This case shows the remarkable richness of the

FIG. 13. Squared eigenfrequencies λ = ω2 calculated for the static configuration on top of inhomogeneity (without dissipation and bias
current) depending on the value of d/Ly for h = 4 and ε = 0.1. The left and right panels differ only in scale.
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dynamical behaviors of the kink front interacting with hetero-
geneity. We studied two types of inhomogeneities. One was
in the form of a barrier, while the other was in the form of
a well.

Of particular interest is the process of creating a static
final state in the case with dissipation and forcing. We deal
with the formation of such a state when a front with too low
a velocity is stopped (by a sequence of oscillations) before
the peak and when a front that is too slow is trapped by
a well.

We have analyzed the competing factors that contribute
to the formation of the resulting stationary states and have
shown that our reduced 1 + 1-dimensional description can
capture the resulting state very accurately. It is worth noting
that the approximate description in each of the studied cases
is also accurate for long time evolutions for small values of
the parameter describing the strength of heterogeneity. While
deviations might occur in some cases for very long times
(in Hamiltonian perturbations) or for sufficiently large per-
turbations in dissipative cases, generally, we found that the
reduced kink filament model was very accurate in capturing
the relevant dynamics.

Finally, we also studied the stability of a straight kink front
captured by a single inhomogeneity of the form of a potential
well. In this case, the zero mode of the sine-Gordon model
without inhomogeneities turns into an oscillating mode in the
model with inhomogeneities. Indeed, the breaking of transla-
tional invariance leads to either an effective attractive well or
a repulsive barrier (see also the analytical justification in Ap-
pendix C) manifested in the presence of an internal oscillation
or a saddlelike departure from the inhomogeneous region. In
addition, the periodic boundary conditions we have adopted
result in a number of additional discrete modes appearing in
the system in addition to the ground state and the continuous
spectrum. These are effectively the linear modes associated
with the quantized wave numbers due to the transverse do-
main size. In the absence of a genuinely 2D heterogeneity,
this picture can be made precise with the respective eigen-
modes being ky = 2nπ/Ly. In the presence of genuinely 2D
heterogeneities, the picture is still qualitatively valid, but the
modes are locally deformed and then a degenerate perturba-
tion theory analysis is warranted, as shown in Appendix B,
where we have provided such an analytical description of
the mode structure. This description matches quite well with
the numerical results especially for the lower states of the
spectrum under study.

Naturally, there are numerous extensions of the present
work that are worth exploring in the future. More specifically,
in the present setting we have focused on inhomogeneities
impacted on by rectilinear kink structures, while numerous
earlier works [35,36,38] have considered the interesting ad-
ditional effects of curvature in the two-dimensional setting.
In light of the latter, it would be interesting to examine
heterogeneities in such radial cases. Furthermore, in the
sine-Gordon case, the absence of an internal mode in the
quasi-one-dimensional setting may have a significant bearing
of a phenomenology and the possibility of energy transfer type
effects that occur, e.g., in the φ4 model [48]. It would, thus, be
particularly relevant to explore how the relevant phenomenol-
ogy generalizes (or is modified) in the latter setting. Finally,

while two-dimensional settings have yet to be exhausted (in-
cluding about the potential of radial long-lived breathinglike
states), it would naturally also of interest to explore similar
phenomena in the three-dimensional setting. Such studies are
presently under consideration and will be reported in future
publications.
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APPENDIX A: KINK EXISTENCE AND STABILITY

1. Peak-shaped inhomogeneity

We will consider the case of a kink front stopped by the
inhomogeneity (in the form of a barrier; see Fig. 5) in the
presence of forcing and dissipation. The static configuration
in this case is the solution of the following equation

−∂x(F (x, y)∂xφ0) − ∂2
y φ0 + sin φ0 = −�. (A1)

To begin, we will show that the solution can be represented
(for small perturbations) as the sum of a kink profile φK =
4 arctan ex−X0(y) and a correction that depends only on the
shape of the inhomogeneity and the external forcing, i.e.,
φ0(x, y) = φK (x − X0) + χ (x, y). The equation satisfied by
the correction χ , to leading order, is of the form

− ∂x(F (x, y)∂xχ ) − ∂2
y χ + [cos φK (x − X0)]χ

= ε∂x(g(x, y)∂φK (x − X0)) − �. (A2)

The results of simulations performed on the ground of ap-
proximation (A2) and the field model (A1) are demonstrated
in Fig. 14. This figure shows in the left panel the χ profiles
obtained for different values of the ε parameter. Starting from
the top, we have ε = 0.1, ε = 0.2, and ε = 0.5. In all cases,
� = 0.001. The right panel shows the profile of the static kink
front in the same cases. This panel, on the one hand, shows the
static kink front obtained from Eq. (A1) (black dashed line)
and, on the other hand, the fronts obtained from the solutions
of Eq. (A2) for different values of the parameter ε. The red line
corresponds to ε = 0.1, the blue line corresponds to ε = 0.2,
while the yellow line corresponds to ε = 0.5. These fronts
were determined for the φK + χ configuration. The deforma-
tion of the kink center is due to the fact that it is supported by
the inhomogeneity in the central part and, on the other hand,
at the edges it is stretched by the existing constant forcing.
Of course, due to the tension of the kink front, stretching
cannot take place unrestrictedly because this would lead to
an excessive increase in the total energy stored in the kink
configuration. Let us notice that in all cases, qualitatively the
shape of the static kink front is correctly reproduced. On the
other hand, in the case of ε = 0.5 we observe some quantita-
tive deviations in the central part.

We also test the stability of the above described solu-
tion. This is based on the equation which looks identical to
Eq. (20); however, the main difference is the relationship of
the eigenvalue λ to the frequency. In the case considered in
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FIG. 14. The left panel shows the function χ (x, y) for, starting from top, ε = 0.1, 0.2, and 0.5. The right panel compares the shape of the
kink front obtained using Eq. (A2) with the exact results represented by the dashed black line, for the same values of ε. The forcing is assumed
here to be � = 0.001.

this section λ = ω(ω − iα). Figure 15 shows the dependence
of the square of the frequency ω on the parameter d/Ly. It
can be seen that the excitation spectrum determined for the
configuration shown in Fig. 14, consists of a ground state,
excited states and a continuous spectrum. The form of this
spectrum is to a significant degree similar to the excitation
spectrum of the kink front trapped by the potential well and
shown in Figs. 11 and 12. The main difference from the
previous diagrams is that the discrete excited states show less
periodicity in comparison with the previous figures.

2. Heterogeneity with a form of well

In this section, we describe the change in the profile of the
static kink that results from the existence of an inhomogeneity
in the form of a well. We assume that the well is centrally

FIG. 15. Graph of squared eigenfrequencies ω2 calculated for the
static kink configuration stopped by a barrier (with dissipation and
bias current) depending on the value of d/Ly for ε = 0.5 and h = 4.
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FIG. 16. The shape of the function χ (x, y), for a static kink
front trapped by a well-shaped inhomogeneity. The parameters in the
figure are as follows: d = 4, h = 4, ε = 0.1.

located and has dimensions defined by the parameters h and
d , i.e., F (x, y) = 1 + εg(x, y) = 1 − εp(x)q(y) and

p(x) = 1

2

[
tanh

(
x + h

2

)
− tanh

(
x − h

2

)]

≈
⎧⎨⎩1, x ∈ [− h

2 ,+ h
2 ]

0, x /∈ [− h
2 ,+ h

2 ]
, (A3)

q(y) = 1

2

[
tanh

(
y + d

2

)
− tanh

(
y − d

2

)]

≈
{

1, y ∈ [− d
2 ,+ d

2 ]

0, y /∈ [− d
2 ,+ d

2 ]
. (A4)

The approximate form used to calculate some integrals when
determining the analytical form of the eigenvalues (see Ap-
pendix B) is also given in the above expression. An example
profile obtained from Eq. (A2) in the absence of bias current
(� = 0) is shown in Fig. 16. The shape of the χ function,
although shown for specific parameter values (i.e., h = 4,
d = 4, and ε = 0.1), is characteristic over a wide range of
parameters. The profile shown in Figs. 17 is an even function
in the y variable and an odd function in the x variable. The
panels of Fig. 17 also include a simple fit in the form of the

step function. The parameter χ0 was chosen so that the areas
under the curves α = α(x), β = β(y) and the fit were iden-
tical. In the next section (Appendix B), we use this form of
the χ function to approximate the eigenvalues when studying
the stability of a static configuration trapped by a well-like
inhomogeneity,

χ (x, y) = χ0 α(x)β(y), (A5)

α(x) ≈

⎧⎪⎪⎨⎪⎪⎩
−1, x ∈ [ − h

2 , 0
)

+1, x ∈ [
0,+ h

2

]
0, otherwise

,

β(y) ≈
{+1, x ∈ [ − d

2 ,+ d
2

]
0, otherwise

. (A6)

In order to validate the analytical expressions (B18) and (B32)
for the eigenvalues of the linear excitation operator, we also
determined a much better fit for the χ function. We looked for
the fit in the form:

χ (x, y) = χ0 tanh(ax)sech(ax)

× (
4 arctan ey+ d

2 − 4 arctan ey− d
2
)
. (A7)

The shape of the fit was compared with the numerical result.
Figure 18 shows a very good convergence between the fit
(dashed line) and the numerical result (solid line). The fig-
ure was made for parameters equal to χ0 = 0.67, a = 0.85,
and h = 4, respectively. The fit form described by Eq. (A7)
was also used to determine the numerical value of the inte-
grals in Appendix B. The results obtained on this basis are
presented in Fig. 12. As can be seen for lower eigenvalues, we
observe improved agreement with numerical results. More-
over, the improvement is evident for values of d/Ly close
to 1.

APPENDIX B: KINK STABILITY
IN THE POTENTIAL WELL

In this section, we will present analytical results on the
spectrum of linear excitations of a deformed kink bounded
by an inhomogeneity in the form of a potential well. We start

FIG. 17. Cross sections with fitting for χ (x, y). The value of χ0 = 0.67 was determined by fit. Here h = 4, d = 4, and ε = 0.1.
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FIG. 18. Cross sections with fitting for χ (x, y). The dashed green line represents a fit function of the form χ (x, y) =
χ0 tanh(ax)sech(ax)(4 arctan ey+ d

2 − 4 arctan ey− d
2 ). Here h = 4, d = 10, and ε = 0.1.

with Eq. (21)

L̂v + cos φ0 v = λv. (B1)

Since we plan to use perturbation calculus in the parame-
ter ε determining the magnitude of the inhomogeneity, we
separate the operator L̂ into a part L̂0 that does not de-
pend on the perturbation parameter and a part Ŵ preceded
by this parameter. The relationships between operators and
the other quantities used in this section are summarized
as follows:

L̂v = L̂0v + εŴ v, L̂0v = −∂2
x v − ∂2

y v,

Ŵ v = − ∂x(g(x, y) ∂xv), F (x, y) = 1 + εg(x, y). (B2)

According to the results presented in Appendix A, we can
separate the static kink configuration in the presence of inho-
mogeneity into static free kink φK and deformation associated
with the existence of inhomogeneity χ ,

φ0(x, y) = φK (x) + χ (x, y). (B3)

Next, we expand the quantities appearing in formula (B1) with
respect to the parameter ε,

v = v(0) + εv(1) + ε2v(2) + . . . , (B4)

λ = λ(0) + ελ(1) + ε2λ(2) + . . . ,

χ = χ (0) + εχ (1) + ε2χ (2) + . . . . (B5)

The function χ is defined in such a way that it does not appear
in the zero order, i.e., χ (0) = 0. In addition, since in the system
under consideration we assume periodic boundary conditions
in the direction of the y variable we also take v(x,− 1

2 Ly) =
v(x,+ 1

2 Ly). Moreover, it is assumed that the inhomogeneity
disappears at the edges of the system (in the direction of
the variable x), i.e., g(x, y) → 0 for x → ± 1

2 Lx. Note also
that, like ∂xφ(± 1

2 Lx, y), also ∂xv(± 1
2 Lx, y) disappears at the

x boundaries of the area under consideration.

1. The lowest order of expansion

In the lowest order, we get the equation

L̂0v
(0) + cos φK v(0) = λ(0)v(0), (B6)

where φK (x) = 4 arctan(ex ) describes the kink front lo-
cated at x = 0 and stretched along the y axis. For the
function φK (x), the equation can be separated into two
equations. One depending on the x variable and the
other on y. Using periodicity in the y variable, we
obtain a series of eigenvalues and eigenfunctions. The
ground state in this approximation corresponds to zero
eigenvalue

λ
(0)
0 = 0, v

(0)
0 (x, y) = A0 sech(x), A0 = 1√

2Ly tanh Lx
2

. (B7)

The subsequent eigenstates correspond to nonzero eigenval-
ues

λ
(0)
n± =

(
2π

Ly

)2

n2,

{
v

(0)
n+(x, y) = A sech(x) cos

(
2πn y

Ly

)
v

(0)
n−(x, y) = A sech(x) sin

(
2πn y

Ly

) ,

A = 1√
Ly tanh Lx

2

. (B8)

In the lowest order of the perturbation calculus, all nonzero
eigenvalues are degenerate twice. The normalization coeffi-
cients A and A0 were chosen so that the eigenfunctions were
normalized to 1 in the sense of the product defined as the
integral over the area [−Lx/2,+Lx/2] × [−Ly/2,+Ly/2], ac-
cording to the formula

〈u, v〉 ≡
∫ + Lx

2

− Lx
2

∫ + Ly
2

− Ly
2

u(x, y)v(x, y)dxdy, (B9)

where we assume that functions are periodic with respect to
the variable y and their x derivatives disappear at the bound-
aries x = ± Lx

2 .

2. The first order of expansion

In the first order of expansion the equation is of the form

L̂0v
(1) + cos φK v(1) + Ĝv(0) = λ(0)v(1) + λ(1)v(0). (B10)

In order to shorten the formulas that appear in this section, the
operator Ĝ was introduced

Ĝv(0) ≡ Ŵ v(0) − (sin φK )χ (1)v(0). (B11)
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a. Correction to the ground state

We project Eq. (B10) for the ground state onto the state v
(0)
0

which leads to the equation〈
v

(0)
0 , (L̂0 + cos φK ) v

(1)
0

〉 + 〈
v

(0)
0 , Ĝv

(0)
0

〉
= λ

(0)
0

〈
v

(0)
0 , v

(1)
0

〉 + λ
(1)
0

〈
v

(0)
0 , v

(0)
0

〉
. (B12)

Due to the normalization of the state v
(0)
0 and the fact that the

operator L̂0 + cos φK is Hermitian, i.e.,

〈v, (L̂0 + cos φK ) u〉 = 〈(L̂0 + cos φK )v, u〉, (B13)

Eq. (B12) can be reduced to the form

λ
(1)
0 = 〈

v
(0)
0 , Ĝv

(0)
0

〉
. (B14)

We determine the value of λ
(1)
0 based on Eqs. (B11) and (B2).

In this Appendix, we take the following form of g(x, y) =
−p(x)q(y). As for the function describing the deformation
of the function φ0 resulting from the existence of inhomo-
geneities, i.e., χ (1), we write it as follows χ (1) = χ0 α(x)β(y).
Under the above conditions, the correction of first order is of
the form

λ
(1)
0 = 1

2Ly tanh Lx
2

(2χ0JαIβ − JpIq). (B15)

The integrals that appear in the above formula are defined
below

Jp ≡
∫ + Lx

2

− Lx
2

p(x) sech2(x) tanh2(x)dx, Iq ≡
∫ + Ly

2

− Ly
2

q(y)dy,

(B16)

Jα ≡
∫ + Lx

2

− Lx
2

α(x) sech3(x) tanh(x)dx, Iβ ≡
∫ + Ly

2

− Ly
2

β(y)dy.

(B17)

The p(x) and q(x) functions appearing in the above integrals,
in the paper, are taken in the form of (A3) and (A4). On
the other hand, the form of the function χ (x, y) ≈ χ (1)(x, y)
is approximated, according to considerations contained in
Appendix A in formulas (A6). Two of the above integrals
approximately describe the width of the inhomogeneity in the
direction of the y variable, i.e., Iq ≈ d , Iβ ≈ d. Consequently,
the eigenvalue of the ground state takes the form of

λ0 = λ
(0)
0 + ελ

(1)
0 + · · · ≈ ε

2 tanh Lx
2

d

Ly
(2χ0Jα − Jp).

(B18)
To complete the result obtained, we provide the integrals
appearing in this formula

Jα ≈ 2

3

[
1 − sech3

(
h

2

)]
, (B19)

Jp = coth

(
h

2

)⎧⎪⎨⎪⎩
2 tanh

( Lx
2

) − coth
(

h
2

)
ln
[

cosh ( Lx+h
2 )

cosh ( Lx−h
2 )

]
sinh2

(
h
2

)
+2

3
tanh3

(
Lx

2

)}
. (B20)

b. Correction to the degenerate states

In the case of degenerate states, we perform a projection
of Eq. (B10) into a state that is a combination of zero-order
eigenstates,

vn =
∑
i=±

civ
(0)
ni . (B21)

Projection of the equation of the first order written for the
degenerate state v0

n j onto the v state gives〈
vn, (L̂0 + cos φK ) v

(1)
n j

〉 + 〈
vn, Ĝv

(0)
n j

〉
= λ(0)

n

〈
vn, v

(1)
n j

〉 + λ(1)
n

〈
vn, v

(0)
n j

〉
. (B22)

Orthonormality of the zero-order states and hermiticity of the
operator L̂0 + cos φK leads to a system of equations for the
coefficients ci,∑

i=±
ci
〈
v

(0)
ni , Ĝv

(0)
n j

〉 = λ(1)
n

∑
i=±

ci δi j . (B23)

Due to the second degree of degeneracy, we can write the last
equation in 2 × 2 matrix form,[

G++ − λ(1)
n G+−

G−+ G++ − λ(1)
n

][
c+
c−

]
=
[

0
0

]
, (B24)

where the matrix elements Gi j are written in the basis that
consists of eigenstates of the zero-order approximation,

Gi j = 〈
v

(0)
ni , Ĝv

(0)
n j

〉
. (B25)

The condition for the existence of nontrivial solutions of the
above equation is the zeroing of the determinant (so that
nontrivial solutions of the homogeneous system exist)∣∣∣∣G++ − λ(1)

n G+−
G−+ G++ − λ(1)

n

∣∣∣∣ = 0. (B26)

According to the above equation, corrections of the first
order remove the degeneracy, leading to the eigenvalue cor-
rections:

λ
(1)
n± = 1

2
[ (G++ + G−−) ±

√
(G++ − G−−)2 + 4G+−G−+ ].

(B27)
The expression above is greatly simplified due to the even-
ness of the q(−y) = q(y) and β(−y) = β(y) functions in
the y variable. This property removes the matrix element
G+− = 0 which leads to a significant simplification of the last
formula,

λ
(1)
n± = 1

2 [ (G++ + G−−) ± |G++ − G−−|]. (B28)

Matrix elements that appear in the above expression,

G++ = A2(2χ0 JαI+
β − JpI+

q ), G−− = A2(2χ0 JαI−
β − JpI−

q ),
(B29)

are written using integrals

I+
q =

∫ + Ly
2

− Ly
2

q(y) cos2

(
2πn

y

Ly

)
dy,

I−
q =

∫ + Ly
2

− Ly
2

q(y) sin2

(
2πn

y

Ly

)
dy, (B30)
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I+
β =

∫ + Ly
2

− Ly
2

β(y) cos2

(
2πn

y

Ly

)
dy,

I−
β =

∫ + Ly
2

− Ly
2

β(y) sin2

(
2πn

y

Ly

)
dy. (B31)

The final result shows the disappearance of the degeneracy of
the higher eigenvalues [the integrals Jα and Jp are defined by
the formulas (B19) and (B20)]

λn± = λ(0)
n + ελ

(1)
n± + · · · ≈

(
2π

Ly

)2

n2

+ ε

2 tanh
( Lx

2

) (2χ0 Jα − Jp)

⎡⎢⎣ d

Ly
±

∣∣∣∣∣∣∣
sin

(
2πn d

Ly

)
2πn

∣∣∣∣∣∣∣
⎤⎥⎦.

(B32)

This result was obtained by means of the approximation

I±
q ≈ 1

2
Ly

⎡⎢⎣ d

Ly
±

sin
(

2πn d
Ly

)
2πn

⎤⎥⎦,

I±
β ≈ 1

2
Ly

⎡⎢⎣ d

Ly
±

sin
(

2πn d
Ly

)
2πn

⎤⎥⎦. (B33)

In addition, the normalization factor A included in formula
(B8) was used, while the values of the integrals Jα and Jp are
defined by the formulas (B19) and (B20).

APPENDIX C: EIGENVALUE ESTIMATION

In this section, we will estimate the value of λ = ω2 cor-
responding to the ground state, based on the shape of the
energy landscape of the system under study. We consider the

Lagrangian density of the sine-Gordon model in the presence
of inhomogeneity,

L = 1
2 (∂tφ)2 − 1

2F (x, y)(∂xφ)2 − 1
2 (∂yφ)2 − V (φ). (C1)

The energy density in this model is of the form

ρ = 1
2 (∂tφ)2 + 1

2F (x, y)(∂xφ)2 + 1
2 (∂yφ)2 + V (φ). (C2)

As in previous parts V (φ) = 1 − cos φ and F (x, y) = 1 +
εg(x, y). Into the expression for the energy density we in-
sert the kink ansatz φK (t, x) = 4 arctan ex−x0(t ), where x0 =
x0(t ) determines the position of the kink. Based on expres-
sion (C2), we calculate the energy per unit length of the
kink front,

E (x0) = 1

Ly

∫ + Lx
2

− Lx
2

∫ + Ly
2

− Ly
2

ρ(x, y, x0)dxdy = 1

2
mẋ0

2 + Ṽ (x0).

(C3)
The first term has its origin in the differentiation of the kink
ansatz with respect to the time variable ∂tφK = −ẋ0 ∂xφK and
m = 8 tanh Lx

2 ≈ 8 is the mass of a free, resting kink (where
Lx = 30). The next terms define the potential energy. Un-
der the assumption for the form of inhomogeneity g(x, y) =
−p(x)q(y), the potential energy can be expressed by two
integrals,

Ṽ (x0) = 8 − 2εI (d )J (x0, h), (C4)
where we denoted

I (d ) = 1

Ly

∫ + Ly
2

− Ly
2

q(y)dy = 1

Ly
ln

⎡⎢⎣cosh
(

Ly+d
2

)
cosh

(
Ly−d

2

)
⎤⎥⎦ ≈ d

Ly
,

J (x0, h) =
∫ + Lx

2

− Lx
2

p(x)sech2(x − x0)dx. (C5)

For a more compact result (and because of the rapid disap-
pearance of the p function when approaching the edge), we
approximate the second integral as follows:

J (x0, h) ≈
∫ +∞

−∞
p(x)sech2(x − x0)dx = −

[
2x0 + h − sinh(2x0 + h)

cosh(2x0 + h) − 1
− 2x0 − h − sinh(2x0 − h)

cosh(2x0 − h) − 1

]
. (C6)

In the vicinity of the center of the well (i.e., for x0 = 0), we can approximate the potential energy (C4) to the accuracy of the
harmonic term,

Ṽ (x0) ≈ A + Bx2
0, (C7)

where the expansion coefficients are respectively

A = 8 + 4ε
d

Ly

(
h − sinh h

cosh h − 1

)
, B = 2ε

d

Ly
csch4

(
h

2

)
[h(2 + cosh h) − 3 sinh h]. (C8)

We can rescale the original potential Ṽ (x0) by a constant
getting a new potential V (x0) = Ṽ (x0) − A. The effective La-
grangian for this system is thus of the form

L = 1
2 mẋ0

2 − Bx2
0 . (C9)

The effective equation is that of a harmonic oscillator

ẍ0 + 2B

m
x0 = 0. (C10)

The eigenfrequency of this oscillator describes, in a manner
independent of the perturbation calculus performed in Ap-

pendix B (i.e., the latter is at the level of the equation of
motion, while here we work at the level of the corresponding
Lagrangian and energy functionals), the ground state appear-
ing in the description of the linear stability of a kink trapped
by a well-shaped inhomogeneity,

ω2 = 2B

m
= 1

2
ε

d

Ly
csch4

(
h

2

)
[h(2 + cosh h) − 3 sinh h].

(C11)
The relevant result is showcased in Fig. 10.
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