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Streszczenie

Niniejsza rozprawa bada warunki wystarczaja̧ce na istnienie punktów sta lych
dla odwzorowań monotonicznie G-nieoddalaja̧cych i wielowartościowych odwzoro-
wań monotonicznie G-nieoddalaja̧cych w przestrzeniach metrycznych oraz w prze-
strzeniach modularnych wyposażonych w strukturȩ digrafu. W szczególnosci bada
odwzorowania monotoniczne i wielowartościowe odwzorowania monotoniczne w u-
porza̧dkowanych przestrzeniach metrycznych i modularnych.

W tym celu podchodzimy do teorii punktu sta lego w dwóch kierunkach. Pier-
wszy kierunek zwia̧zany jest z miara̧ niezwartości. Korzystaja̧c z za lożeń Darbo
i Sadovskiego, dowodzimy istnienia punktów sta lych odwzorowań monotonicznych
i wielo-wartościowych odwzorowań monotonicznych. Przedstawiamy także różne
zastosowania uzyskanych wyników do kilku modeli: równań ca lkowych typu Ham-
mersteina, równań ca lkowych typu Volterry, problemów pocza̧tkowych pierwszego
rzȩdu z niecia̧g lościami oraz funkcyjnych inkluzji ca lkowych.

W drugim kierunku rozważamy struktury geometryczne w przestrzeniach me-
trycznych i modularnych. W rezultacie powsta lo wiele w lasności, które zosta ly
użyte, żeby pokazać istnienie punktów sta lych odwzorowań monotonicznie G-
nieoddalaja̧cych oraz wielowartościowych odwzorowań monotonicznie G-nieoddala-
ja̧cych.
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Abstract

This dissertation investigates the sufficient conditions for the existence of fixed
points for monotone G-nonexpansive mappings and monotone G-nonexpansive
multivalued mappings in metric spaces as well as modular spaces equipped with a
digraph. In particular, it examines monotone mappings and monotone multivalued
mappings in metric and modular ordered spaces.

For these purposes, we approach fixed point theory in two directions. The
first direction is related to the measure of noncompactness. Using the assump-
tions of Darbo and Sadovskĭı, we prove the existence of fixed points of monotone
mappings and monotone multivalued mappings. We also present various applica-
tions of the achieved results to several models: integral equations of Hammerstein
type, integral equations of Volterra type, first order initial value problems with
discontinuities and functional integral inclusions.

In the remaining direction, we consider geometric structures for metric spaces
and modular spaces. Consequently, numerous properties have been established
and used to show the existence of fixed points of monotone G-nonexpansive map-
pings and monotone G-nonexpansive multivalued mappings.
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List of symbols

General notations
R the set of all real numbers
R+ R+ := [0,∞)
I I := [0, 1]
N N := {1, 2, . . .}

diam(A) the diameter of a subset A
�X a partial order on the set X
�k a partial order on the set Rk

(←, a], [a,→) order intervals
G = (V (G), E(G)) a digraph G with vertices V (G) and edges E(G)
(←, a]G, [a,→)G, G-intervals along the walks

MNCs measure of noncompactness
(xn)n a sequence {x1, x2, ...}

Spaces and families
B(X) the family of all nonempty bounded subsets of metric space X
CL(X) the family of all nonempty closed subsets of metric space X
CP(X) the family of all nonempty compact subsets of metric space X
C(I,R) the space of all continuous real-valued functions defined on I
BC(R+) the space of all bounded continuous real functions on R+

CLρ(X) the family of all nonempty closed subsets of modular space Xρ

CPρ(X) the family of all nonempty compact subsets of modular space Xρ
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Chapter 1

Introduction

In mathematics, a fixed point refers to a specific element in the domain that
remains unchanged when the mapping acts on it. More formally, an element
x0 belonging to a nonempty set X is said to be a fixed point of the mapping
T : X → X if T (x0) = x0.

Fixed point theory and its applications are fascinating areas of study in mod-
ern mathematics. The known results for monotone mappings play a major role in
determining solutions for differential equations, integral equations, systems of non-
linear equations, functional equations, etc. (see [18], [34]). Additionally, the study
of monotone multivalued mappings, a branch of mathematics that has gained sig-
nificant attention in recent decades, has practical applications in fields such as
convex optimization, optimal control theory and differential inclusions (see [62]).
Their relevance extends beyond mathematics with applications in diverse scientific
disciplines including computer science, control theory, game theory, mathematical
physics, biology, economics and many others (see [88], [112]).

The Knaster-Tarski fixed point theorem (see [79]) for monotone mappings is a
well-known result due to its applications in the field of denotational semantics for
programming languages. It says that any monotone mapping T : X → X on a
complete lattice X possesses a fixed point. Unlike Banach contraction principle,
the Knaster-Tarski fixed point theorem does not provide an algorithm to approx-
imate fixed points. If we additionally equip X with a metric, it will provide us
with a metric structure rich enough to obtain new fixed point theorems. Metric
spaces also allows us to use measures of noncompactness on them. Fixed point
theory with an approach involving measures of noncompactness is a powerful tool
for assessing the existence of solutions of integral and differential equations. Darbo
[36] was the first to apply the Kuratowski measure of noncompactness α to show
the existence of fixed points for any continuous mapping T : X → X provided
that there exists k ∈ [0, 1) such that

α(T (Ω)) ≤ kα(Ω),

where Ω belongs to the set B(X) of all bounded subsets of X. Note that Darbo’s
proof includes the existential aspect of Banach’s fixed point theorem. Many re-
searchers have extended this result and also provided applications of various types
of functional equations (see [2], [3], [4], [6], [21], [39], [75]). The main research di-
rection in these results involves considering the extension conditions of the Darbo’s
assumption for continuous operators defined on closed bounded convex subsets of
a Banach space. The argument used in the proofs of these results is similar to
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Darbo’s. Darbo’s theorem has also been extended to the case of monotone con-
tinuous mappings (see [5], [96], [113]). So far, many applications of the theorems
have been shown (see [4], [5], [21], [96], [113]).

Sadovskĭı [106] generalized Darbo’s result for condensing operators that are
continuous and satisfy the inequality

α(T (Ω)) < α(Ω).

There are also numerous applications that illustrate Sadovskĭı’s result (see [3],
[21]). It is worth emphasizing that the continuity of the map T plays an im-
portant role in the proof of Sadovskĭı. Monotone mappings are not necessarily
continuous. Hence, in extending Sadovskĭı’s theorem to monotone mappings, the
continuity of mappings has been modified (see [6], [14]). In 2018, considering
on partially ordered Hausdorff topological spaces with compact order intervals,
Esṕınola and Wísnicki [47] showed that the set of fixed point of any monotone
mapping T is nonempty provided that there exists c such that c � T (c). In 2023,
Taoudi [111] gave a generalization of Esṕınola-Wísnicki’s theorem. It confirms
that on a partially ordered Hausdorff topological space X, if we assume that every
order interval is closed and C is a nonempty closed subset of X, then any monotone
mapping T : C → C has a fixed point provided that for any totally ordered subset
Ω of C, T (Ω) is a compact subset of X. Clearly, the compactness is an important
assumption in these results. For any measure of noncompactness µ on a metric
space X, Ω is compact if µ(Ω) = 0, where Ω ∈ B(X). By this relation and the
above results, we give counterparts of Darbo–Sadovskĭı’s theorem for monotone
mappings in metric spaces without continuity. It is also natural to extend these
results to the case of monotone multivalued mappings. The study of fixed points
of multivalued mappings is closely linked to the study of the solution of functional
integral inclusions. Research related to the measures of noncompactness has also
received much attention in recent years (see [17], [41], [43], [44], [57], [60], [97], [88],
[112] [114]). In these results, it is necessary to assume that the set-valued func-
tion under consideration is either lower semi-continuous (upper semi-continuous)
or continuous with respect to the Hausdorff metric H(·, ·) in its domain. Subse-
quently, applications of Carathéodory’s condition for multi-functions are a com-
monly employed method when proving these existence theorems. More recently,
several authors have established many results for monotone multivalued mappings.
These monotone multivalued mappings satisfy some kind of continuity (see [40],
[57]). Our next aim is to consider the existence of a fixed point of monotone maps
T : C → CL(C) without continuity, where C is a closed bounded subset of a
metric space X, where CL(C) denotes the class of all non-empty closed subsets of
X.

Recent results in fixed point theory also attempt to be extended to G-monotone
mappings in spaces equipped with a digraph G. However, the approaches of
Esṕınola-Wísnicki and Taoudi only work on partially ordered sets, it is difficult
to extend them to the case of sets endowed with a digraph. We know that the
original motivation of Knaster-Tarski’s theorem [79] was to find an invariant set
for suitably defined monotone operator on the power set. If such sets are available,
they will enable us to use iteration in next steps of the proof. This convenience
also applies to G-monotone mappings. Hence, the identification of invariant sets
through given G-monotone mappings is the first important step in the process of
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proving the existence of their fixed points. It is also the second purpose in my
dissertation. For this purpose, we extend the assumption of Esṕınola-Wísnicki for
the family of G-intervals along walks as follows:

(P1) Any family of G-intervals along walks of the form [a, b]G or [a,→)G with
the finite intersection property has a nonempty intersection.

By combining the G-monotonicity of the mapping with Kuratowski–Zorn’s
lemma, we can ascertain the existence of a G-interval that remains invariant under
any G-monotone map.

The above obtained results allow us to extend a lot of results for monotone non-
expansive mappings to monotone G-nonexpansive mappings. Fixed point theory
for nonexpansive mappings has its origins in the papers by Browder [28], Göhde
[55] and Kirk [77] that were published in 1965. The initial positive results were all
obtained when the domain was a convex subset of a Banach space. Therefore, a
convex structure is essential for the domain of monotone nonexpansive mappings
when investigating their fixed points. The current research has primarily focused
on Banach spaces (see [7], [12], [18], [71], [108], [110]), hyperbolic metric spaces
(see [9], [37], [109]) and modular spaces (see [1], [8], [24], [37]) that are equipped
with uniform convexity. Most of the spaces in the mentioned results have the
following property:

(P2) Every nonincreasing sequence of nonempty bounded closed (ρ-bounded
ρ-closed for modular spaces) convex subsets of X has a nonempty intersection.

With the use of uniform convexity (see Definition 4.1, [68]), we are going to
prove the following property which is equivalent to (P2):

(P3) Any family of nonempty bounded closed (ρ-bounded ρ-closed for mod-
ular spaces) convex subsets of X satisfying the finite intersection property, has
a nonempty intersection.

Therefore, property (P1) is satisfied under the assumption that G-intervals
along walks are closed, bounded and convex subsets of X. This assumption is
natural in the context of function spaces. With property (P3), it allows us to ap-
proach the research direction of Kirk [77] in the study of the fixed point problem
for monotone G-nonexpansive mappings in various spaces. Using techniques as-
sociated with the asymptotic center and the asymptotic radius, Kirk showed that
any reflexive Banach space with normal structure has the fixed point property for
nonexpansive mappings. Khamsi extended this result for metric spaces ([64]) and
for modular spaces ([65]). Our next purpose is to extend these results to monotone
G-nonexpansive mappings in geodesic spaces.

There exist numerous convex structures of Banach spaces that imply normal
structure and consequently the fixed point property for multivalued mappings
such as uniform convexity, nearly uniform convexity etc. Hence, it is natural to
investigate whether these structures can also imply the existence of fixed points
of monotone G-nonexpansive multivalued mappings in hyperbolic metric spaces
and modular spaces. Recent results are provided for monotone G-nonexpansive
multivalued mappings T : C → CL(C), where C is a G-compact subset in hy-
perbolic metric space (see [9]). We consider the case, where C is a closed (resp.
ρ-closed) subset in a hyperbolic metric space (resp. modular space). Then we show
the existence of fixed points for monotone G-nonexpansive multivalued mapping
T : C → CP(C), where CP(C) is the family of all compact subsets of C.

For the above purposes, the structure of the thesis is outlined as follows: Chap-
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ter 1 provides a comprehensive overview of the fixed point theory concerning
monotone mappings. It analyzes findings established by previous researchers, in-
cluding ones that have not been addressed in prior studies. It also presents the
purpose and research methods used in the thesis. Finally, an overview of the thesis
structure is provided.

In Chapter 2, we introduce fundamental concepts regarding ordered metric
spaces and measures of noncompactness. Next, we establish fixed point theorems
for monotone mappings using measures of noncompactness. We also prove the
existence of common fixed points for a commutative family of monotone mappings.
Furthermore, we extend these results to monotone multivalued mappings. As
applications, we present examples regarding the existence of solutions of integral
equations of Hammerstein type, integral equations of Volterra type, first order
initial value problems with discontinuities and functional integral inclusions.

In the first section of Chapter 3, we provide some basic definitions in graph
theory. In the next section, we show the existence of invariant G-intervals under
G-monotone mappings. Following this, we present several fixed point theorems
for monotone G-nonexpansive mappings and monotone G-asymptotically nonex-
pansive mappings in Banach spaces. We also give an application of Volterra type
integral equation to illustrate our results.

Chapter 4 is dedicated to fixed point theorems concerning G-monotone map-
pings, monotone G-nonexpansive mappings and monotone G-nonexpansive multi-
valued mappings in geodesic spaces. Firstly, we introduce fundamental concepts
regarding geodesic spaces, uniformly convex structures and their properties. Based
on these properties, we obtain existence theorems of the aforementioned mappings.

Following the structure of Chapter 4, Chapter 5 introduces fundamental con-
cepts of modular spaces and their uniformly convex structures. Additionally, we
present essential properties of uniformly convex modular spaces required for our
proofs. Subsequently, we obtain the existence of fixed points for monotone Gρ-
nonexpansive mappings and monotone Gρ-nonexpansive multivalued mappings in
these spaces.

Dau Hong Quan 4



Chapter 2

Fixed point theorems via measures of
noncompactness

In this chapter, we introduce basic concepts related to ordered metric spaces
and measures of noncompactness. We also provide brief illustrative examples
intended for applications in the next sections. Following that, we establish several
fixed point theorems for monotone mappings and monotone multivalued mappings
in ordered metric spaces. Finally, these results will be used to prove the existence
of solutions for integral equations, differential equations and functional integral
inclusions.

2.1. Preliminaries

2.1.1 Ordered metric spaces

Let us start this section by introducing basic definitions concerning partial
orders and the Kuratowski-Zorn lemma. These concepts can be found in [56].

Definition 2.1.1. Let X be a nonempty set. We say that a relation � is a partial
order on X if for any x1, x2, x3 ∈ X, the following conditions are satisfied:

(i) Reflexivity: x1 � x1;

(ii) Antisymmetry: if x1 � x2 and x2 � x1 then x1 = x2;

(iii) Transitivity: if x1 � x2 and x2 � x3 then x1 � x3.

A poset (X,�) is a nonempty set X equipped with a partial order relation �
on it. Order intervals mean the sets of the form

[a,→) := {x ∈ X : a � x},
(←, b] := {x ∈ X : x � b},

[a, b] := [a,→) ∩ (←, b]

for every a, b ∈ X.

Example 2.1.2. 1) It is easy to prove that any subset X of R forms a poset
when it is equipped with the standard less than or equal relation “≤”. Order
intervals in X are defined by [a,→) = [a,+∞) ∩X, (←, a] = (−∞, a] ∩X
for a ∈ X.
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2.1. PRELIMINARIES

Take k ∈ N. On Rk, we define a relation as follows:

x ≤
k
y ⇔ xi ≤ yi for all i ∈ {1, . . . , k},

for x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk. We can show that ≤
k

is a partial
order. Then for any subset X of Rk, (X,≤

k
) is a poset, and order intervals

in X are sets of the form

[x,→) = {y = (y1, . . . , yk) ∈ X : xi ≤ yi for all i ∈ {1, . . . , k}},
(←, x] = {y = (y1, . . . , yk) ∈ X : xi ≥ yi for all i ∈ {1, . . . , k}}.

We note that for k = 1 we have ≤1 := ≤.

2) Assume that k,m ∈ N. Let X be a nonempty subset of Rk and Y be a
nonempty subset of the poset (Rm,≤m). Denote by F(Rk,Rm) the set of all
functions f from Rk to Rm. We consider a relation �F defined by

h �F g ⇔ h(x) ≤m g(x) ∀x ∈ Rk,

for h, g ∈ F(Rk,Rm). Clearly, �F is a partial order. Thus (F(Rk,Rm),�F )
is a poset.

Definition 2.1.3. Let (X,�) be a poset and Y be a subset of X.

(i) An element x0 ∈ X is an upper bound of subset Y if Y ⊆ (←, x0], i.e.,
y � x0 for every y ∈ Y .

(ii) If an upper bound x0 of Y belongs to Y , x0 is called the maximum of Y ,
and denoted as x0 = maxA.

(iii) The element y0 ∈ X is said to be the supremum of Y , denoted y0 = supY
if y0 is an upper bound of Y and x ∈ [y0,→) for every upper bound x of Y .

(iv) An element z0 ∈ Y is called maximal of Y if there does not exist any element
z1 ∈ Y such that z0 � z1 and z0 6= z1.

The notions of a lower bound, minimum, infimum and a minimal element of A are
defined similarly.

Definition 2.1.4. Let (X,�) be a poset and Y be a subset of X.

(i) The set Y is said to be a chain (or totally ordered) if x ∈ (←, y] or y ∈ (←, x]
for any x, y ∈ Y .

(ii) The set Y is called directed if for each pair x, y ∈ Y there exists z ∈ Y such
that x, y ∈ (←, z].

Clearly, if A is a chain, A is also a directed set. The converse of this statement
is not correct.

Example 2.1.5. Any subset of R is a chain. This statement doesn’t hold for
(Rk,�

k
) where k > 1. Indeed we take a subset Y = {y = (y1, ..., yk) : |yi| ≤

1 for all i ∈ {1, ..., k}}. Consider z = (1/2, 0, 0, ..., 0) and t = (0, 1/2, 0, ..., 0).
Clearly, z, t ∈ Y , z /∈ (←, t] and t /∈ (←, z]. Furthermore, we can choose v =
(1, 1, 0, ..., 0) ∈ Y such that z, t ∈ (←, v]. Thus Y is a directed set but it is not a
chain.

Dau Hong Quan 6



2.1. PRELIMINARIES

The following lemma, known as the Kuratowski–Zorn lemma, will be used in
proving some theorems of this thesis. It provides a certain sufficient condition for
the existence of a maximal element in a set endowed with a partial order.

Lemma 2.1.6 (Kuratowski-Zorn lemma). Let (X,�) be a poset. Assume that
every chain in X has an upper bound in X. Then the set X contains at least one
maximal element.

Definition 2.1.7. We say that a sequence (xn)n in a poset (X,�) is nondecreasing
(resp. nonincreasing) if xn � xn+1 (resp. xn+1 � xn) for every n ≥ 1. A sequence
is called monotone if it is nondecreasing or nonincreasing.

In this thesis, when referring to monotone sequences, it is implicitly understood
without explicit specification that we are discussing nondecreasing sequences. In
this chapter, we are going to work on ordered metric spaces that have the following
definition.

Definition 2.1.8 ([56]). Let (X, d) be a metric space, and � be a partial order
on X. An ordered metric space is a triple (X, d,�) such that in the metric space
(X, d), order intervals [x,→), (←, x] are closed sets for every x ∈ X .

Example 2.1.9. 1) The Euclidean metric d, the metric d1, and the maximum
metric d2 are respectively defined on Rk (k ∈ N) by

d(x, y) =
(

(x1 − y1)2 + . . .+ (xk − yk)2
) 1

2
.

d1(x, y) = |x1 − y1|+ . . .+ |xk − yk|.
d2(x, y) = max{|x1 − y1|, . . . , |xk − yk|}.

Then (Rk, d,�k), (Rk, d1,�k) and (Rk, d2,�k) are ordered metric spaces.

2) Put m0 := {x = (x1, x2, x3, . . .) : xn = xn+1 = . . . = 0 for some n ∈ N}. We
equip this space with the following metric

dm0
(x, y) = sup

i∈N
|xn − yn|

for all x = (x1, x2, x3, . . .), y = (y1, y2, y3, . . .) ∈ m0. Obviously, (m0, dm0
) is

a metric space. We consider a partial order on m0 as follows:

x �m0
y ⇔ xi ≤ yi for all i ∈ N,

for x = (x1, x2, x3, . . .), y = (y1, y2, y3, . . .) ∈ m0. Order intervals in m0 are
defined by

[x,→) = {y = (y1, y2, . . .) ∈ X : xi ≤ yi ∀i ≥ 1},
(←, x] = {y = (y1, y2, . . .) ∈ X : xi ≥ yi ∀i ≥ 1}.

It is not difficult to prove that (m0, dm0
,�m0

) is an ordered metric space.

Definition 2.1.10 ([56]). An ordered Banach space is a triple (X, ‖ · ‖,�) such
that (X, ‖ · ‖) is a Banach space, and (X, d,�) is an ordered metric space, where
d is the metric generated by the norm ‖ · ‖.

Dau Hong Quan 7



2.1. PRELIMINARIES

Obviously, (X, ‖ ·‖,�) is an ordered Banach space if and only if order intervals
are closed sets in the Banach space (X, ‖ · ‖).

Example 2.1.11. Put I := [0, 1] ⊂ R. Let C(I,R) represent the space of all
continuous real-valued functions defined on I. We consider the following maximum
norm

‖f‖C = max
x∈I
|f(x)|

for every f ∈ C(I,R). With this norm, C(I,R) is a Banach space. On C(I,R), we
defined a relation as follows:

f �C g ⇔ f(x) ≤ g(x) ∀x ∈ I,

for every f, g ∈ C(I,R). It is a simple matter to show that order intervals in C(I,R)
are closed sets in the Banach space (C(I,R), ‖ · ‖C). Hence (C(I,R), ‖ · ‖C ,�C) is
an ordered Banach space.

The next results are special properties of convergent monotone sequences in
ordered metric spaces.

Lemma 2.1.12 ([56]). Let (xn)n be a sequence in a poset (X,�).

(i) If (xn)n is a chain, it has a monotone subsequence.

(ii) If (xn)n is nondecreasing (resp. nonincreasing), then it has the supremum
(resp. the infimum) y0 if and only if y0 is the supremum (resp. the infimum)
of some of its subsequences.

Proposition 2.1.13 ([56]). If a nondecreasing (resp. nonincreasing) sequence
(xn)n in an ordered metric space (X, d,�) has a limit point y0, then y0 = sup

n
xn

(resp. y0 = inf
n
xn).

Proposition 2.1.14 ([56]). A monotone sequence in an ordered metric space X
converges if its each subsequence has a limit point.

The following result provides necessary and sufficient conditions for the con-
vergence of monotone sequences in a chain of ordered metric spaces.

Proposition 2.1.15 ([56]). If C is a chain in an ordered metric space, then each
monotone sequence of C converges if and only if C is compact.

2.1.2 Measure of noncompactness

Let (X, d) be a complete metric space. The symbol Bx(r) will denote the
closed ball centered at x ∈ X with radius r > 0. Denote by B(X) the family of all
nonempty bounded subsets of X, CL(X) the family of all nonempty closed subsets
of X, CP(X) the family of all nonempty compact subsets of X and diam(A) the
diameter of a subset A of X.

Definition 2.1.16 (compare [113]). A measure of noncompactness (MNCs for
short) defined on a complete metric space (X, d) is a function ν : B(X)→ [0,∞)
such that for any Ω1,Ω2 ∈ B(X), we have
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(i) If ν(Ω1) = 0 then Ω1 ∈ CP(X);

(ii) ν(Ω1) = ν(Ω1);

(iii) ν(Ω1 ∪ Ω2) = max{ν(Ω1), ν(Ω2)}.

In Definition 2.1.16, if we replace condition i) with condition

(i’) ν(Ω1) = 0 if and only if Ω1 ∈ CP(X),

then we say that ν is a regular measure of noncompactness on X.
From Definition 2.1.16, we infer the following properties:

(iv) If Ω1 ⊆ Ω2 then ν(Ω1) ≤ ν(Ω2),

(v) ν(Ω1 ∩ Ω2) ≤ min{ν(Ω1), ν(Ω2)},

(vi) If (Ωn)n ⊆ CL(X) ∩ B(X) such that Ωn+1 ⊆ Ωn for every n ≥ 1 and
lim
n→∞

µ(Ωn) = 0, then the set Ω∞ =
⋂∞
i=1 Ωn is nonempty and compact.

(vii) If ν is a regular measure of noncompactness on X, and Ω = {x1, . . . , xn} ⊆ X
then ν(Ω) = 0.

Moreover, if X is a Banach space, the regular measure of noncompactness ν
can enjoy the following properties:

(viii) ν(tΩ1) = |t|ν(Ω1) for any number t.

(ix) ν(Ω1 + Ω2) ≤ ν(Ω1) + ν(Ω2).

(x) ν(x0 + Ω1) = ν(Ω1) for any x0 ∈ X.

(xi) ν(co(Ω1)) = ν(Ω1), where co(Ω1) is the convex hull of Ω1.

We are going to present some measures of noncompactness. These examples
will be used in Section 2.5.

Example 2.1.17 ([80]). Let (X, d) be a complete metric space. The Kuratowski
MNCs is defined by

α(Ω) = inf{ε > 0 : Ω ⊆
m⋃
k=1

Ωk,Ωk ⊂ X, diam Ωk ≤ ε for all 1 ≤ k ≤ m}

for every Ω ∈ B(X).

Example 2.1.18. We consider the Banach space (C(I,R), ‖ · ‖C) as mentioned in
Example 2.1.11. Now, we take Ω ∈ B(C(I,R)), f ∈ Ω and δ > 0. Put

Ψ(f, δ) := sup{|f(x)− f(y)| : x, y ∈ I, |x− y| ≤ δ},
Ψ(Ω, δ) := sup

f∈Ω
Ψ(f, δ),

Ψ0(Ω) := lim
δ→0

Ψ(Ω, δ).

The function Ψ0 is a regular MNCs on C(I;R) (see [22]).
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Example 2.1.19. Consider the space BC(R+) of all bounded continuous real-
functions on R+ := [0,∞) with the standard sup-norm

‖f‖BC = sup
x≥0
|f(x)|

for every f ∈ BC(R+). Clearly, (BC(R+), ‖ · ‖BC) is a Banach space. Take Ω ∈
B(BC(R+)), f ∈ Ω, L > 0 and ε > 0. We define

ΨL(f, ε) := sup{|f(x)− f(y)| : x, y ∈ [0, L], |x− y| ≤ ε},
ΨL(Ω, ε) := sup

f∈Ω
ΨL(f, ε),

ΨL
0 (Ω) := lim

ε→0
ΨL(Ω, ε),

Ψ0(Ω) := lim
L→∞

ΨL
0 (Ω),

and consider the function

b(Ω) := lim
L→∞

{
sup
f∈Ω
{sup{|f(x)− f(y)| : x, y ≥ L}}

}
.

Put
Ψ1(Ω) := Ψ0(Ω) + b(Ω).

In [20], Banaś showed that Ψ1 is a MNCs on BC(R+).

2.2. Fixed points of monotone mappings

This section has two parts. In the first part, focusing on ordered metric
spaces, we show counterparts of Darbo’s theorem for a monotone, not necessarily
continuous, mapping F : X → X under the assumption of Darbo using measures
of noncompactness. In the next part, we prove the existence of common fixed
points for a commutative family of monotone mappings under the assumption of
Sadovskĭı [106] using regular measures of noncompactness. Our existence results
exploit the arguments of Darbo [36], Sadovskĭı [106], and Taoudi [111]. Firstly,
we recall the definition of monotone mappings.

2.2.1 Fixed points of monotone mappings

Definition 2.2.1 ([56]). Let (X,�) be a poset. A mapping T : X → X is called
monotone (or order-preserving) if for all x, y ∈ X such that x � y, it satisfies
T (x) � T (y).

A point x ∈ X is called a fixed point of T if T (x) = x. The set of fixed points
of T will be denoted by Fix(T ).

Example 2.2.2. 1) Assume that k ≥ 1. On the poset (Rk,≤
k
), the mapping

T is defined by

T (x) = (x1 + 1, x3
2 + 3, ..., x2k+1

k + (2k + 1)),

for x = (x1, ..., xk) ∈ Rk. Since f(t) = t2n+1 + (2n + 1) is nondecreasing on
R for every n ∈ {1, ..., k}, T is monotone on Rk. It is not difficult to prove
that Fix(T ) = ∅.
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2) We consider Example 2.1.2 2). Take y0 ∈ Rm. On the set F(Rk,Rm), we
define a mapping T : F(Rk,Rm)→ F(Rk,Rm) by

T (f)(x) = 2f(x) + y0,

for all x ∈ Rk. It is easy to check that T is monotone on (F(Rk,Rm),�F ).
Clearly, Fix(T ) = {f : f(x) = −y0, ∀x ∈ X}.

Definition 2.2.3 ([111]). A mapping T : X → X is said to be monotone sequen-
tially continuous on X if for every monotone sequence (xn)n of X that converges
to some x ∈ X, the sequence (T (xn))n converges to T (x).

Obviously, continuous maps are monotone sequentially continuous. The con-
verse is not true. Indeed, we can consider the following example.

Example 2.2.4. In (R2, d) with the Euclidean metric d, we consider the partial
order:

(u, v) � (t, w)⇔ (u = v ≤ t = w) or (u = t and v = w).

The function g is defined as follows:

g(u, v) =

{
(1, 1) if u ≤ v

(0, 0) if u > v
for every (u, v) ∈ R2.

Then g is monotone sequentially continuous on R2 but it is not continuous at any
point (u, u) ∈ R2.

Example 2.2.5. Monotone nonexpansive mappings in metric spaces provide nat-
ural examples of monotone sequentially continuous mappings (see [105]).

We are going to present the first result concerning monotone mappings.

Theorem 2.2.6 ([103]). Let Y be a nonempty closed bounded subset in a complete
ordered metric space (X, d,�), and let ν be a measure of noncompactness on X.
Let T : Y → Y be a monotone mapping satisfying

ν(T (Ω)) ≤ kν(Ω)

for any Ω ⊆ Y with k ∈ [0, 1). Assume that the set {y ∈ Y : y � T (y)} is
nonempty. Then T has a fixed point.

Proof. Define Y0 = Y , . . . , Yn+1 = T (Yn) for any n ≥ 0. We have

ν(Yn+1) = ν(T (Yn)) = ν(T (Yn)) ≤ kν(Yn)

≤ k2ν(Yn−1) ≤ . . . ≤ kn+1ν(Y0).

Consequently,
lim
n→∞

ν(Yn+1) = 0.

We have

Y1 = T (Y0) = T (Y ) ⊆ Y = Y = Y0,

Y2 = T (Y1) ⊆ T (Y0) = Y1.
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2.2. FIXED POINTS OF MONOTONE MAPPINGS

By induction, we have that Yn+1 ⊆ Yn for any n ≥ 0. By Definition 2.1.16 vi), we

infer that the set A =
∞⋂
n=0

Yn is a nonempty compact subset of Y .

For each n ≥ 0, we have

T (Yn+1) ⊆ T (Yn) ⊆ T (Yn) = Yn+1.

Therefore, it deduces that T (A) ⊆ A.
Take x0 ∈ {y ∈ Y : y � T (y)}. Put

An = {T n(x0), T n+1(x0), . . .} for any n ≥ 0,

where T 0(x0) = x0. Note that for any n ≥ 0, An ⊆ Yn. Clearly, T (An) = An+1 for
any n ≥ 0. By an argument analogous to the one above, we get

∞⋂
n=0

An 6= ∅.

Take c ∈
∞⋂
n=0

An ⊂ A. Then c ∈ An for any n ≥ 0. If any subsequence of (T n(x0))n

does not converge to c, then c ∈ An for any n ≥ 0. It implies that c � T (c).
Assume now that there exists a subsequence (T nk(x0))k of (T n(x0))n such that

lim
k→∞

T nk(x0) = c. Since (T nk(x0))k is nondecreasing, it follows from Proposition

2.1.13 that
c = sup

n
T n(x0).

By monotonicity of T , we get

T n(x0) � T (c) for each n ≥ 0,

and thus c � T (c).
Let U = {x ∈ A : x � T (x)}. Since c ∈ U , U 6= ∅. Obviously, T (x) ∈ U

whenever x ∈ U . Suppose that Z is a chain in U . For each z ∈ Z, we set

Vz = [z,→) ∩ Z.

Clearly, Vz is a nonempty closed subset of A for any z ∈ Z. Let z1, ..., zn ∈ Z.
Since Z is a chain, there exists i0 ∈ {1, ..., n} with zi0 = max{z1, ..., zn}. It shows
that zi0 ∈ Vzi for all i = 1, ..., n. Thus

n⋂
i=1

Vzi 6= ∅.

It means that the family (Vz)z∈Z has the finite intersection property. Hence

Z0 =
⋂
z∈Z

Vz 6= ∅.

Take v ∈ Z0. We have z � v, so that T (z) � T (v) for all z ∈ Z. Hence
Z ⊆ (←, T (v)]. By the closedness of A and (←, T (v)], we deduce that v ∈ Z ⊆
(←, T (v)] ∩ A. Thus v ∈ U is an upper bound of Z in U . By Kuratowski-Zorn’s
lemma, there is a maximal element u∗ in U . Furthermore, u∗ � T (u∗) ∈ U from
monotonicity of T . By maximality of u∗ in U , we have u∗ = T (u∗).
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Theorem 2.2.7 ([103]). Let Y be a nonempty bounded closed subset of a complete
ordered metric space (X, d,�), and let ν be a regular measure of noncompactness
on X. Let T : Y → Y be a monotone mapping satisfying

(i) ν(T (Ω)) < ν(Ω) for any chain Ω ⊂ Y with ν(Ω) > 0, and

(ii) T is monotone sequentially continuous.

If x0 ∈ {y ∈ Y : y � T (y)}, then the iteration (T n(x0))n converges to a fixed point
of T .

Proof. Assume that x0 ∈ Y such that x0 � T (x0). Let

Ω = {x0, T (x0), T 2(x0), ...}.

It is not difficult to prove that Ω is a chain. We have

ν(Ω) = ν(T (Ω) ∪ {x0}) = ν(T (Ω)).

It implies that ν(Ω) = 0, i.e., Ω is compact. It follows from Proposition 2.1.15
that {T n(x0)} converges to y ∈ Y . Since T is monotone sequentially continuous,
lim
n→∞

T (T n(x0)) = T (y). We note that (T (T n(x0)))n is a subsequence of (T n(x0))n.

By the uniqueness of the limit point, we have T (y) = y.

If we take Y = [x0, y0], we obtain the following theorem. This theorem is
a slight extension of Dhage’s result [40] in the case of monotone single-valued
mappings.

Theorem 2.2.8. Let (X, d,�) be a complete ordered metric space, and let ν be
a regular measure of noncompactness on X. Assume that x0, y0 belong to X such
that x0 � y0 and x0 6= y0. Let T : [x0, y0] → [x0, y0] be a monotone mapping
satisfying

(i) ν(T (Ω)) < ν(Ω) for any chain Ω ⊂ Y with ν(Ω) > 0, and

(ii) T is monotone sequentially continuous.

Then T has a minimal fixed point z∗ and a maximal fixed point z∗ in [x0, y0], and

z∗ = lim
n→∞

yn, z∗ = lim
n→∞

xn,

where yn = T (yn−1), and xn = T (xn−1) for each n = 1, 2, . . . .

Proof. By an argument analogous to that used in the proof of Theorem 2.2.7, the
monotone sequence (xn)n with xn = T (xn−1) for any n = 1, 2, . . . converges to
z∗ ∈ [x0, y0], and

z∗ = lim
n→∞

xn+1 = lim
n→∞

T (xn) = T (z∗).

We are going to prove that z∗ is a minimal fixed point of T in [x0, y0]. Indeed, take
z ∈ [x0, y0] such that T (z) = z. Since T is monotone, it follows that T (x0) � T (z),
i.e., x1 � z. It implies that x2 = T (x1) � T (z) = z. By induction, we have xn � z
for all n ≥ 1. Since (←, z] is closed, it deduces that z∗ � z. Hence z∗ is a minimal
fixed point of T . Similarly, we can show the existence and maximality of the fixed
point z∗.
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2.2.2 Common fixed points for a finite commutative family
of monotone mappings

Definition 2.2.9. Let F be a family of mappings from X into X. We say that
F is commutative if for any S, T ∈ F , we have

T (S(x)) = S(T (x))

for any x ∈ X.

Let F be an arbitrary commutative family of monotone mappings. The recent
result of Esṕınola-Wísnicki [47] showed that in an ordered Hausdorff topological
space X, if order intervals are compact then F has a common fixed point provided
that there exists x0 ∈ X such that x0 � F (x0) for all F ∈ F . Combining the
approaches of Esṕınola–Wísnicki and Sadovskĭı [106], we show the existence of
common fixed points for a commutative family F .

Theorem 2.2.10. Let Y be a nonempty bounded closed subset in a complete or-
dered metric space (X, d,�), and ν a regular measure of noncompactness on X.
Let {T1, . . . , Tn} be a nonempty finite commutative family of monotone maps from
Y into Y satisfying

max{ν(Ti(Ω)) : i = 1, . . . , n} < ν(Ω)

for any Ω ⊆ Y with ν(Ω) > 0. Assume that there exists x0 ∈ Y such that

x0 � Ti(x0) for any i ∈ {1, . . . , n}. Then
n⋂
i=1

Fix(Ti) 6= ∅.

Proof. Put

M =
{
M ⊆ Y : M ∈ CL(X), x0 ∈M, and Ti(M) ⊆M for any i ∈ {1, . . . , n}

}
.

Clearly, M 6= ∅ since Y ∈M. Set

A =
⋂

M∈M

M, and B =
n⋃
i=1

Ti(A) ∪ {x0}.

Since x0 ∈ A, A is a nonempty bounded closed set. It is not difficult to show that
A belongs to M, and so we get Ti : A → A for any i ∈ {1, . . . , n}. Since x0 ∈ A
and Ti(A) ⊆ A = A for any i ∈ {1, . . . , n}, it deduces that B ⊆ A. Thus

Ti(B) ⊆ Ti(A) ⊆ B for any i ∈ {1, . . . , n}.

It implies that B ∈ M, hence A ⊆ B. Therefore, B = A. By properties of ν, we
get

ν(A) = ν(B) = ν
( n⋃
i=1

Ti(A) ∪ {x0}
)

= ν
( n⋃
i=1

Ti(A)
)

= max{ν(Ti(A)) : i = 1, . . . , n}.
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It follows that ν(A) = 0. Hence A is compact.
Let U = {x ∈ A : x � Ti(x) for any i ∈ {1, . . . , n}}. Since x0 ∈ U , U 6= ∅.

Since {T1, . . . , Tn} is a commutative family, Ti(U) ⊆ U for any i ∈ {1, . . . , n}.
Suppose that Z is a chain in U . For each z ∈ Z, we set

Vz = [z,→) ∩ Z.

Clearly, Vz is a nonempty closed subset of A for any z ∈ Z. Let z1, ..., zn ∈ Z.
Since Z is a chain, there exists i0 ∈ {1, ..., n} with zi0 = max{z1, ..., zn}. It shows
that zi0 ∈ Vzi for all i = 1, ..., n. Thus

n⋂
i=1

Vzi 6= ∅.

It means that the family (Vz)z∈Z has the finite intersection property. Hence

Z0 =
⋂
z∈Z

Vz 6= ∅.

Take v ∈ Z0. For every z ∈ Z, we have z � v, so that for any i ∈ {1, . . . , n},
Ti(z) � Ti(v). Hence Z ⊆ (←, Ti(v)]. By the closedness of A and (←, Ti(v)], we
deduce that v ∈ Z ⊆ (←, Ti(v)]∩A. Thus v ∈ U is an upper bound of Z in U . By
Kuratowski-Zorn’s lemma, there is a maximal element u∗ in U . It deduces that
for any i ∈ {1, . . . , n}, x � Ti(x) � Ti(u

∗) for every x ∈ U , x � u∗. Note that
Ti(u

∗) ∈ U for any i ∈ {1, . . . , n}. By maximality of u∗, we have u∗ = Ti(u
∗) for

any i ∈ {1, . . . , n}. Therefore, u∗ is a common fixed point of {T1, . . . , Tn}.

When T1 = T2 = . . . = Tn = T , we obtain the following theorem.

Lemma 2.2.11. Let Y be a nonempty bounded closed subset in a complete ordered
metric space (X, d,�), and ν a regular measure of noncompactness on X. Let
T : Y → Y be a monotone map satisfying

ν(T (Ω)) < ν(Ω)

for any Ω ⊆ Y with ν(Ω) > 0. Assume that there exists x0 ∈ Y such that
x0 � T (x0). Then Fix(T ) 6= ∅.

2.3. Fixed points of monotone multivalued mappings

It is natural to generalize Lemma 2.2.11 for monotone multivalued mappings.
Before giving our result, we establish a lemma that appears to be interesting in
its own right and will be used later.

Lemma 2.3.1 ([100]). Let (xn)n and (yn)n be two sequences in an ordered metric
space (X, d,�) that satisfy the following conditions:

(i) xn � xn+1 and xn � yn for every n;

(ii) lim
n→∞

xn = x and lim
n→∞

yn = y.

Then x � y.
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Proof. Since lim
n→∞

xn = x and (xn)n is monotone, we infer that x = sup{xn : n ≥
1}. Fix n ≥ 1. It is not difficult to see that

ym ∈ [xn,→) for all m ≥ n.

Since order intervals are closed, it implies that y ∈ [xn,→) for every n ≥ 1. Thus
we have xn ∈ (←, y] for any n ≥ 1. Therefore, x � y.

Definition 2.3.2. Let (X,�) be a poset. A multivalued mapping T : X →
2X \ {∅} is called monotone if and only if for any x, y ∈ X with x � y and any
x1 ∈ T (x), there exists y1 ∈ T (y) such that x1 � y1.

If x ∈ T (x) then the point x is called a fixed point of T . The set of all fixed
points of T is denoted by Fix(T ).

In [74], Khamsi and Misane call a multivalued mapping T : X → 2X \ {∅}
monotone if for any x, y ∈ X with x � y and any y1 ∈ T (y), there exists x1 ∈ T (x)
such that x1 � y1.

In [42], Dhage refers to a map satisfying the conditions in Definition 2.3.2 as
right monotone increasing. According to the definition provided by Khamsi and
Misane, such maps are called left monotone increasing. A mapping that is both
left and right monotone increasing is known as isotone increasing (see Definition
2.3, [40]).

Example 2.3.3. On a poset (C(I,R),�C) (see Example 2.1.11), we define the
multivalued mappings T1 and T2 from C(I,R) to 2C(I,R) \ {∅} as follows:

T1(f) = [f − 1,→) and T2(f) = [f + 1,→),

for every f ∈ C(I,R). Obviously, T1, T2 are monotone and Fix(T1) = C(I,R),
Fix(T2) = ∅.

Theorem 2.3.4 ([100]). Let Y be a nonempty bounded closed subset in a complete
ordered metric space (X, d,�), and let ν be a regular measure of noncompactness
on X. Let T : Y → CL(Y ) be a monotone multivalued mapping such that for each
Ω ⊆ Y with ν(Ω) > 0, we have

ν(T (Ω)) < ν(Ω),

where T (Ω) =
⋃
x∈Ω

T (x). Assume that {x ∈ Y : [x,→) ∩ T (x) 6= ∅} 6= ∅. Then T

has a fixed point.

Proof. We are going to prove that there is a compact subset A ⊆ Y such that
T (A) ⊆ A. Take any x0 ∈ {x ∈ Y : [x,→) ∩ T (x) 6= ∅}. Put

M = {M : M ∈ CL(Y ), x0 ∈M, and T (M) ⊆M}.

Since Y ∈M, M 6= ∅. We also set

A :=
⋂

M∈M

M, and B := T (A) ∪ {x0}.
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Obviously, A 6= ∅ since x0 ∈ A. It is not difficult to show that A belongs to
M, and so we have T : A → CL(A). Moreover, A = B. Indeed, since x0 ∈ A,
T (A) ⊆ A, and A is closed, it deduces that B ⊆ A. Thus we have

T (B) ⊆ T (A) ⊆ B,

and so B ∈M. Hence A ⊆ B. By the properties of ν, we have

ν(A) = ν(B) = ν(T (A) ∪ {x0}) = ν(T (A)) = ν(T (A)).

It deduces that ν(A) = 0. Therefore, A is compact.
Put

U := {x ∈ A : T (x) ∩ [x,→) 6= ∅}.

Since x0 ∈ U , U is nonempty. Note that for a fixed x ∈ U , we have y ∈ U for all
y ∈ T (x) satisfying x � y. Suppose that Z is a chain in U , and set

Fz := [z,→) ∩ Z for each z ∈ Z.

Clearly, Fz is a nonempty closed subset of A, for all z ∈ Z. Take any z1, ..., zn ∈ Z.
Since Z is a chain, there exists i0 ∈ {1, ..., n} with zi0 = max{z1, ..., zn}. It deduces
that zi0 ∈ Fzi for all i ∈ {1, ..., n}. Consequently,

n⋂
i=1

Fzi 6= ∅.

This means that the family (Fz)z∈Z has the finite intersection property. It implies
that

Z0 =
⋂
z∈Z

Fz 6= ∅.

Take v ∈ Z0. Since Z is a chain, we can find a monotone sequence (zn)n in
Z such that lim

n
zn = v. If (zn)n is nonincreasing, then v = inf

n
zn. Since zn � v,

it implies that zn = v for any n. Hence v ∈ U . Assume now that (zn)n is
nondecreasing. Since (zn)n ⊆ U , there exists a sequence (yn)n in A such that

zn � yn ∈ T (zn) for each n ≥ 1.

Since z � v for any z ∈ Z, zn � v for any n ≥ 1. By monotony of T , there is a
sequence (vn)n in T (v) such that

yn � vn ∈ T (v) for each n ≥ 1.

Note that T (v) is compact. Thus we have lim
k
vnk = t ∈ T (v) for a subsequence

(vnk)k of (vn)n. Now we have

znk � vnk for every k ≥ 1.

It follows from Lemma 2.3.1 that v � t ∈ T (v). Hence v ∈ U .
It deduces that v is an upper bound of Z in U . By Kuratowski-Zorn’s lemma,

U contains a maximal element u∗. Thus u∗ � u for some u ∈ T (u∗). Since u ∈ U ,
it implies that u = u∗. Therefore, u∗ is a fixed point of T .
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MAPPINGS

Example 2.3.5. Define a multivalued map T : [1, 2]→ CL([1, 2]) by

T (x) =


3
2

if x ∈ [1, 5
4
)

[3
2
, 5

3
] if x ∈ [5

4
, 3

2
]

[5
3
, 2] if x ∈ (3

2
, 2].

It is easy to see that T is monotone on the poset ([1, 2],≤). Consider the Ku-
ratowski measure of noncompactness α on [1, 2] defined in Example 2.1.17. Note
that α(T (Ω)) = α(Ω) = 0 for any Ω ⊂ [1, 2]. We can easily see that x0 ∈ T (x0)
for any x0 ∈ {3

2
} ∪ [5

3
, 2].

Example 2.3.6. Denote c0 = {x = (xn)n : xn ∈ R, lim
n→∞

xn = 0}. On the vector

space c0, we consider the norm ‖x‖c0 = max
n≥1
|xn| and the partial order defined by

x �c0 y ⇔ xn ≤ yn for all n ≥ 1

for any x = (xn)n, y = (yn)n ∈ c0. It is not difficult to show that (c0, ‖.‖c0 ,�c0) is
an ordered Banach space. The function ν defined by

ν(Ω) = lim
n→∞

(
sup
x∈Ω

(
max
k≥n
|xk|
))

for all Ω ∈ B(c0),

is a regular MNCs on c0 (see [22]). Let (tn)n be a real sequence such that

inf
n
tn ≥

1

2
, and lim

n→∞
tn < 1.

We define a multivalued map T by

T (x) =
{
y = (y1, y2, . . .) :

1

2
xn ≤ yn ≤ tnxn for any n ≥ 1

}
for x = (xn)n ∈ c0. Clearly, T : B(0, 1) → CL(B(0, 1)) and it is monotone. For
each subset Ω of B(0, 1) such that ν(Ω) > 0, we have

ν(T (Ω)) = lim
n→∞

(
sup

y∈T (Ω)

(
max
k≥n
|yk|
))
≤ lim

n→∞

(
sup
x∈Ω

(
max
k≥n
|tkxk|

))
< lim

n→∞

(
sup
x∈Ω

(
max
k≥n
|xk|
))

= ν(Ω).

It is easy to see that 0 ∈ [0,→)∩T (0), where 0 = (0, 0, . . .). Therefore, 0 ∈ Fix(T ).

2.4. Common fixed points for a commutative pair of mono-
tone mappings

In this section, we are going to study the existence of common fixed points of
a commutative pair of monotone mappings.

Definition 2.4.1. Let (X,�) be a poset. A multivalued T : X → 2X \ {∅}
is called strongly monotone on X if for any x, y ∈ X with x � y then for all
x1 ∈ T (x), y1 ∈ T (y), we have x1 � y1.
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Clearly, if T is a strongly monotone mapping, T is also a monotone mapping.
The term “strongly monotone multivalued mapping” is also used to refer to mul-
tivalued mappings that are of monotone nondecreasing type (I) (see Definition 2.5
(i), [112]).

Example 2.4.2. Let (N,≤) be a poset. We define the multivalued mappings
F1, F2 : N→ 2N as follows:

F1(n) = {n+ 1, n+ 2}, and F2(n) = {n, n+ 1, n+ 2}

for all n ∈ N. It is not difficult to show that F1 is a strongly monotone mapping.
Clearly, F2 is monotone but not strongly monotone.

Definition 2.4.3 ([107]). Let (X,�) be a poset. Let f be a mapping from X
to X and F be a multivalued mapping from X to 2X . The pair (f, F ) is called
commutative if f(F (x)) = F (f(x)) for all x ∈ X.

A point x ∈ X is a common fixed point of the commutative pair (f, F ) if
x = f(x) ∈ F (x).

Example 2.4.4. Define a monotone mapping f : N→ N by f(n) = n+1 for each
n ∈ N, and consider the strongly monotone multivalued mapping F1 in Example
2.4.2. Then we have

F1(f(n)) = F1(n+ 1) = {n+ 2, n+ 3},
f(F1(n)) = f({n+ 1, n+ 2}) = {n+ 2, n+ 3}

for each n ∈ N. Hence the pair (f, F1) is commutative.

Theorem 2.4.5. Let Y be a nonempty bounded closed subset in a complete ordered
metric space (X, d,�), and let ν be a regular measure of noncompactness on X. Let
F : Y → CL(Y ) be a strongly monotone multivalued mapping, and f : Y → Y a
monotone mapping such that F (Y ) ⊆ f(Y ). Assume that the following conditions
are satisfied:

(i) (f, F ) is a commutative pair,

(ii) for each Ω ⊆ Y with ν(Ω) > 0, we have

max{ν(f(Ω)), ν(F (Ω))} < ν(Ω),

where F (Ω) =
⋃
x∈Ω

F (x),

(iii) {x ∈ Y : x � f(x)} ∩ {x ∈ Y : x � y for any y ∈ F (x)} 6= ∅.

Then Fix(F ) ∩ Fix(f) 6= ∅.

Proof. By (iii), there exists x0 ∈ Y such that x0 � f(x0) and x0 � y0 for any
y0 ∈ F (x0). Put

M =
{
M ⊆ Y : M ∈ CL(X), x0 ∈M, and f(M) ⊆M,F (M) ⊆M

}
.
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Since Y ∈M, M is nonempty. We also put

A =
⋂

M∈M

M, and B = F (A) ∪ f(A) ∪ {x0}.

The set A is nonempty since x0 ∈ A. It is not difficult to show that A ∈M. Since
x0 ∈ A, F (A) ⊆ A and f(A) ⊆ A, it implies that B ⊆ A. Thus

F (B) ⊆ F (A) ⊆ B, and f(B) ⊆ f(A) ⊆ B.

It deduces that B ∈ M, so that A ⊆ B. Therefore, B = A. By the properties of
measure of noncompactness, we have

ν(A) = ν(B) = ν
(
{x0} ∪ F (A) ∪ f(A)

)
= max{ν(f(A), ν(F (A))}.

It implies that ν(A) = 0, hence A is compact. Put

Vf := {x ∈ A : x � f(x)},
VF := {x ∈ A : x � y, ∀y ∈ F (x)}.

Clearly, Vf , VF are nonempty, f(Vf ) ⊆ Vf and F (VF ) ⊆ VF . We also put

V := Vf ∩ VF .

Since x0 ∈ V , V is nonempty set. Now, we are going to show that F (Vf ) ⊆ Vf ,
and f(VF ) ⊆ VF .

For the first part, take x ∈ Vf and y ∈ F (x). Then we have x � f(x), and
f(y) ∈ f(F (x)) = F (f(x)). By monotony of F , it deduces that y � f(y), i.e.,
y ∈ Vf . It shows that F (x) ⊆ Vf for any x ∈ Vf . Therefore, F (Vf ) ⊆ Vf .

Next, suppose that x ∈ VF . For any z ∈ F (f(x)), there exists t ∈ F (x) such
that z = f(t). Since x ∈ VF , it implies that x � t. Consequently, f(x) � f(t) = z.
Hence, f(x) � z for any z ∈ F (f(x)). Therefore, we have f(VF ) ⊆ VF .

Finally, we get f(V ) ⊆ V , F (V ) ⊆ V . Suppose that Z is a chain in V . For
each z ∈ Z, set

Vz = [z,→) ∩ Z.

Clearly, Vz is a nonempty closed subset of C for any z ∈ Z. Let z1, ..., zn ∈ Z.
Since Z is a chain, there exists i0 ∈ {1, ..., n} with zi0 = max{z1, ..., zn}. It shows
that zi0 ∈ Vzi for all i = 1, ..., n. Thus

n⋂
i=1

Vzi 6= ∅.

It means that the family (Vz)z∈Z has the finite intersection property. Hence

Z0 =
⋂
z∈Z

Vz 6= ∅.

Take v ∈ Z0, so that z � v for any z ∈ Z. We have f(z) � f(v). It deduces
that z � f(v) for any z ∈ Z, i.e., Z ⊆ (←, f(v)]. By the closedness of ordered
intervals, we have Z ⊆ (←, f(v)] ∩ A. Therefore, v � f(v). On the other hand,
by monotony of F , we get that for any z ∈ Z, z1 ∈ F (z) and v1 ∈ F (v), we have
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z1 � v1. Since z ∈ V , z � z1. It implies that z � v1 for any z ∈ Z. Hence
v ∈ (←, v1] for any v1 ∈ F (v), and so v ∈ V . Therefore, v is an upper bound of
Z in V . By Kuratowski-Zorn’s lemma, there is a maximal element u∗ in V . It
deduces that x � f(x) � f(u∗) for every x ∈ V , x � u∗. Hence f(u∗) is an upper
bound of {x ∈ V : x � u∗}. Moreover, f(u∗) ∈ V . By maximality of u∗, we have
u∗ = f(u∗). Furthermore, we get u∗ � u for any u ∈ F (u∗) ⊆ V . It deduces that
u = u∗. Therefore, u∗ is a common fixed point of f and F .

2.5. Some applications

In this section, we present some applications related to the existence of solutions
of differential and integral equations.

2.5.1 An integral equation of Hammerstein type

Let us study the existence of solutions in C(I,R) of integral equations of the
following form

f(x) = F (x, f(x)) +

∫ 1

0

H(x, s)U(s, f(s))ds for every x ∈ I, (2.5.1)

where F : I×R→ R, H : I×I → [0,∞) are continuous, and U(·, f(·)) is Lebesgue
measurable on I for each f ∈ C(I,R). By a solution of 2.5.1, we mean a function
f ∈ C(I,R) such that

f(x) = F (x, f(x)) +

∫ 1

0

H(x, s)U(s, f(s))ds for every x ∈ I.

Recall that in Example 2.1.11, we showed that (C(I,R), ‖·‖C ,�C) is an ordered
Banach space, and by Example 2.1.2, we have (I ×R,�2) is a poset. In the proof
of the following theorem, we use the regular MNCs Ψ0 in Example 2.1.18.

Theorem 2.5.1 ([103]). Assume that the functions in (2.5.1) satisfy the follow-
ing:

(i) F (·, ·) is continuous on I × R, and F (x, ·) is nondecreasing on R for every
x ∈ I;

(ii) there exists k ∈ [0, 1) such that

|F (x, y)− F (x, z)| ≤ k|y − z| for any x ∈ I and y, z ∈ R;

(iii) H(·, ·) is continuous on I × I;

(iv) U(s, ·) is nondecreasing on R for every s ∈ I, and U(·, f(·)) is Lebesgue
measurable on I for each f ∈ C(I,R);

(v) there exists a function g : I → [0,∞) such that

sup
y∈R
|U(s, y)| ≤ g(s) for a.e. s ∈ I,

and ∫ 1

0

g(s)ds <∞;
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(vi) there exists a function f0 ∈ C(I,R) such that

f0(x) ≤ F (x, f0(x)) +

∫ 1

0

H(x, s)U(s, f0(s))ds for every x ∈ I. (2.5.2)

Then the equation (2.5.1) has a solution f = f(x) belonging to C(I;R).

Proof. We can assume that γ :=
∫ 1

0
g(s)ds > 0. Take f ∈ C(I,R) and put

v(x) :=

∫ 1

0

H(x, s)U(s, f(s))ds for all x ∈ I.

Fix s ∈ I. Since H(·, s) is continuous on compact set I, for any ε > 0, there exists
δ > 0 such that for any t, t′ ∈ I, |t− t′| ≤ δ we have

|H(t, s)−H(t′, s)| ≤ ε

γ
.

Hence

|v(t)− v(t′)| =
∣∣∣ ∫ 1

0

(
H(t, s)−H(t′, s)

)
U(s, f(s))ds

∣∣∣
≤
∫ 1

0

∣∣∣H(t, s)−H(t′, s)
∣∣∣|U(s, f(s))|ds ≤ ε

γ

∫ 1

0

g(s)ds = ε.

Therefore, v is uniformly continuous on I. Now, fix a function f ∈ C(I,R) and
put

T (f)(x) = F (x, f(x)) +

∫ 1

0

H(x, s)U(s, f(s))ds for all x ∈ I.

Obviously, T (f) is continuous on I. It implies that T (C(I,R)) ⊆ C(I,R). Fur-
thermore,

|T (f)(x)| ≤ |F (x, f(x))− F (x, 0)|+ |F (x, 0)|+
∫ 1

0

|H(x, s)||U(s, f(s))|ds

≤ k|f(x)|+ ‖F (·, 0)‖C + γ1

∫ 1

0

g(s)ds

for any x ∈ I, where γ1 = max{H(x, s) : (x, s) ∈ I × I}. Hence

‖T (f)‖C ≤ k‖f‖C +M,

where M = ‖F (·, 0)‖C + γ1γ. It deduces that T (Br(0)) ⊆ Br(0), where r =
M/(1− k).

Now take a nonempty subset Ω of Br(0), f ∈ Ω, and ε > 0. Choosing x, y ∈ I
such that |x− y| ≤ ε, we get

|T (f)(x)− T (f)(y)| ≤ |F (x, f(x))− F (y, f(y))|+
∫ 1

0

|H(x, s)−H(y, s)||U(s, f(s))|ds

≤ |F (x, f(x))− F (x, f(y))|+ |F (x, f(y))− F (y, f(y))|

+

∫ 1

0

|H(x, s)−H(y, s)||U(s, f(s))|ds

≤ k|f(x)− f(y)|+ |F (x, f(y))− F (y, f(y))|

+

∫ 1

0

|H(x, s)−H(y, s)||U(s, f(s))|ds

≤ kΨ(f, ε) + Ψ1(F, ε) + γΨ2(H, ε),
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where

Ψ(f, ε) = sup{|f(x)− f(y)| : x, y ∈ I, |x− y| ≤ ε},
Ψ1(F, ε) = sup{|F (z, x)− F (w, x)| : z, w ∈ I, |z − w| ≤ ε, |x| ≤ r},
Ψ2(H, ε) = sup

{
sup{|H(x, s)−H(y, s)| : s ∈ I} : x, y ∈ I, |x− y| ≤ ε

}
.

Since F , H are continuous respectively on compact sets I× [−r, r] and I× I, then
Ψ1(F, ε)→ 0 and Ψ2(H, ε)→ 0 as ε→ 0.

Thus
Ψ(T (f), ε) ≤ kΨ(f, ε) + Ψ1(F, ε) + γΨ2(H, ε).

Hence
Ψ0(T (Ω)) ≤ kΨ0(Ω).

Clearly, T is monotone on Br(0). Using Theorem 2.2.6, the equation 2.5.1 have a
solution f in C(I,R).

The following is an example of functional-integral equations satisfying our as-
sumptions.

Example 2.5.2. Assume that H : I × I → [0,∞) is a continuous function. Then
the following equation has a solution f in C(I,R):

f(x) =
x(f(x) + 1)

1 + x2
+

∫ 1

0

H(x, s)
f(s)√

s(1 + s)(1 + |f(s)|)
ds.

2.5.2 An integral equation of Volterra type

In the following, we show the existence of solutions in BC(R+) of the functional-
integral equation of the form

f(x) = F (f(x)) +

∫ x

0

U(s, f(s))ds, for every x ≥ 0, (2.5.3)

where F : R → R is continuous on R, and for each f ∈ BC(R+), x ≥ 0 the
function U(·, f(·)) is Lebesgue measurable on [0, x]. By a solution of 2.5.3, we
mean a function f ∈ BC(R+) such that

f(x) = F (f(x)) +

∫ x

0

U(s, f(s))ds, for every x ≥ 0.

Firstly, we consider a relation on BC(R+) as follows:

f �BC g ⇔ f(x) ≤ g(x) for all x ∈ R+,

for every f, g ∈ BC(R+). It is easy to show that this realation is a partial order,
so that (BC(R+),�BC) is a poset. We can prove that all order intervals are closed
in the Banach space (BC(R+), ‖ · ‖BC). Thus (BC(R+), ‖ · ‖BC ,�BC) is an ordered
Banach space. Recall that (R × R,�2) is a poset. In the proof of the following
theorem, we use the MNCs Ψ1 from Example 2.1.19.

Theorem 2.5.3 ([103]). Assume that the following conditions are satisfied:
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(i) F (·) is continuous and nondecreasing on R;

(ii) there exists k ∈ [0, 1) such that

|F (x)− F (y)| ≤ k|x− y| for all x, y ∈ R;

(iii) U(s, ·) is nondecreasing on R for every s ∈ R+, and for each f ∈ BC(R+),
x ≥ 0, the function U(·, f(·)) is Lebesgue measurable on [0, x];

(iv) there exists a function g : [0,∞)→ [0,∞) such that

sup
x∈R
|U(s, x)| ≤ g(s) for a.e. [0,+∞),

and ∫ ∞
0

g(s)ds <∞;

(v) there exists f0 ∈ BC(R+) such that

f0(x) ≤ F (f0(x)) +

∫ x

0

U(s, f0(s))ds for every x ≥ 0. (2.5.4)

Then the equation (2.5.3) has a solution f belonging to the space BC(R+).

Proof. Fix a function f ∈ BC(R+) and put

T (f)(x) = F (f(x)) +

∫ x

0

U(s, f(s))ds for all x ≥ 0.

Note that the function u(x) :=
∫ x

0
U(s, f(s))ds is continuous on [0,∞), and the

function F (f) is continuous on [0,∞). Furthermore,

|T (f)(x)| ≤ |F (f(x))− F (0)|+ |F (0)|+
∫ x

0

|U(s, f(s))|ds

≤ k|f(x)− 0|+ |F (0)|+
∫ x

0

g(s)ds

≤ k|f(x)|+ |F (0)|+
∫ ∞

0

g(s)ds

for every x ∈ R+. Hence T (f) ∈ BC(R+). It means that T (BC(R+)) ⊆ BC(R+).
Now, we have

‖T (f)‖BC ≤ k‖f‖BC + |F (0)|+
∫ ∞

0

g(s)ds.

Therefore, if ‖f‖BC ≤ r with r = R
1−k , where R = |F (0)| +

∫∞
0
g(s)ds, then

‖T (f)‖BC ≤ r. It shows that T (Br(0)) ⊆ Br(0). Moreover, T is monotone on
Br(0).
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Take a nonempty subset Ω of Br(0), a function f ∈ Ω. Fix L > 0, ε > 0.
Choosing z, w ∈ [0, L] such that |z − w| ≤ ε, we get

|T (f)(z)− T (f)(w)| ≤ |F (f(z))− F (f(w))|+
∣∣∣ ∫ w

z

U(s, f(s)ds
∣∣∣

≤ k|f(z)− f(w)|+
∣∣∣ ∫ w

z

|U(s, f(s))|ds
∣∣∣

≤ k|f(z)− f(w)|+
∣∣∣ ∫ w

z

g(s)ds
∣∣∣

≤ kΨL(f, ε) + sup
{∣∣∣ ∫ w

z

g(s)ds
∣∣∣ : z, w ∈ [0, L], |z − w| ≤ ε

}
.

Thus

ΨL(T (f), ε) ≤ kΨL(f, ε) + sup
{∣∣∣ ∫ w

z

g(s)ds
∣∣∣ : z, w ∈ [0, L], |z − w| ≤ ε

}
.

It yields

ΨL(T (Ω), ε) ≤ kΨL(Ω, ε) + sup
{∣∣∣ ∫ w

z

g(s)ds
∣∣∣ : z, w ∈ [0, L], |z − w| ≤ ε

}
.

Using our assumptions, it is not difficult to prove that the function

h(t) =

∫ t

0

g(s)ds

is uniformly continuous on the compact set [0, L]. Hence

lim
ε→0

sup
{∣∣∣ ∫ w

z

g(s)ds
∣∣∣ : z, w ∈ [0, L], |z − w| ≤ ε

}
= 0.

By this estimate, we get
ΨL

0 (T (Ω)) ≤ kΨL
0 (Ω). (2.5.5)

Now, choose z, w ∈ [L,∞), we get

|T (f)(z)− T (f)(w)| ≤ k|f(z)− f(w)|+
∣∣∣ ∫ w

z

g(s)ds
∣∣∣.

Hence
Φ(T (f), L) ≤ kΦ(f, L) + Φ(g, L),

where

Φ(T (f), L) = sup{|T (f)(z)− T (f)(w)| : z, w ∈ [L,∞)},
Φ(f, L) = sup{|f(z)− f(w)| : z, w ∈ [L,∞)},

Φ(g, L) = sup
{∣∣∣ ∫ w

z

g(s)ds
∣∣∣ : z, w ∈ [L,∞)

}
.

It implies that
sup
f∈Ω

Φ(T (f), L) ≤ k sup
f∈Ω

Φ(f, L) + Φ(g, L).
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Now, we observe that the function defined by

η(U) =

∫
U

g(s)ds

for U ∈ B(R+) is a measure on B(R+), where B(R+) is the family of Borel subsets
of R+. Take z, w ∈ [L,∞). Since g(s) ≥ 0 for almost s ≥ 0, we have∣∣∣ ∫ w

z

g(s)ds
∣∣∣ ≤ ∫ ∞

T

g(s)ds = η([L,∞)).

Hence

sup
{∣∣∣ ∫ w

z

g(s)ds
∣∣∣ : z, w ∈ [L,∞)

}
≤ η([L,∞)),

and thus

lim
L→∞

sup
{∣∣∣ ∫ w

z

g(s)ds
∣∣∣ : z, w ∈ [L,∞)

}
≤ lim

L→∞
η([L,∞))

≤η
( ⋂
α≥L

[α,∞)
)

= η(∅) = 0.

Therefore,
b(T (Ω)) ≤ kb(Ω). (2.5.6)

It follows from (2.5.5) and (2.5.6) that

Ψ1(T (Ω)) ≤ kΨ1(Ω),

where
Ψ1(Ω) = Ψ0(Ω) + b(Ω).

By Theorem 2.2.6, there exists a solution f of (2.5.3) in BC(R+).

The following are examples satisfying the assumptions of Theorem 2.5.3:

Example 2.5.4.

f(x) = arctan
f(x) + 2

2
+

1

2

∫ x

0

f(s) sin2 s

s2
√
f 2(s) + 1

ds,

2f(x) =
f(x)

1 + |f(x)|
+

3

π2 log 2

∫ x

0

s√
es − 1

arctan f(s)ds.

2.5.3 A first order initial value problem with discontinu-
ities

Let (E, ‖·‖
E
,�

E
) be an ordered Banach space with the partial order �

E
. Take

a positive number r, and put Br = Br(0) ⊂ E. Let C(I, E) denote the space of
all mappings x : I → E that are continuous on I. Define the supremum norm on
C(I, E):

‖x‖CE = sup{‖x(t)‖
E

: t ∈ I}.
We check at once that (C(I, E), ‖ · ‖CE ) is a Banach space. Define a relation on
C(I, E) by

x �CE y ⇔ x(t) �
E
y(t) for every t ∈ I,
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for every x, y ∈ C(I, E). It is not difficult to prove that �CE is a partial order
on C(I, E), and order intervals in C(I, E) are closed sets in the Banach space
(C(I, E), ‖ · ‖CE ). Therefore, (C(I, E), ‖ · ‖CE ,�CE ) is an ordered Banach space.

Next, consider the Kuratowski MNCs α on the space C(I, E). The following
result is proved in [113, Theorem II.2.11].

Theorem 2.5.5. Assume that Ω is an equicontinuous bounded subset of C(I, E).
Then

α(Ω) = sup
t∈I

α({x(t) : x ∈ Ω}).

We are concerned with the solvability of the following first-order initial value
problem

x′(t) = f(t, x(t)) for a.e. t ∈ I, and x(0) = 0, (2.5.7)

where f : I ×Br → Br.
Before going to our next theorem, let us recall the following lemma (see [90,

Lemma II.1.3]).

Lemma 2.5.6. If h : I → E is integrable then∫ t

0

h(s)ds ∈ tco({h(s) : s ∈ [0, t]})

for all t ∈ I.

Theorem 2.5.7 ([103]). Assume that f : I × Br → Br satisfies the following
conditions:

(i) f(t, ·) is nondecreasing on Br for almost all t ∈ I, and

M = sup{‖f(t, x)‖
E

: (t, x) ∈ I ×Br};

(ii) f(·, x(·)) is integrable on I for every x ∈ C(I, Br);

(iii) there exists k ≥ 0 such that

α(f(I × Ω)) ≤ kα(Ω) for any Ω ⊆ Br;

(iv) there exists a function x0 ∈ Br such that

x0(t) �
∫ t

0

f(s, x0(s))ds for every t ∈ I.

Then the equation (2.5.7) has a solution x ∈ C(J,Br), where J = [0, β] with
0 < β < min{1, r/M, 1/k}.

Proof. Rather than (2.5.7) we consider the following integral equation

x(t) =

∫ t

0

f(s, x(s))ds. (2.5.8)
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Fix x ∈ C(J,Br), and put

T (x)(t) =

∫ t

0

f(s, x(s))ds.

Since f(·, x(·)) is integrable, then T (x) is continuous on J . For z, w ∈ J , we get

‖T (x)(z)− T (x)(w)‖
E

=
∥∥∥∫ w

z

f(s, x(s))ds
∥∥∥
E

≤M‖z − w‖
E
,

and
‖T (x)(z)‖

E
≤ βM.

It means that T (C(J,Br)) ⊆ C(J,Br), and T (C(J,Br)) is equicontinuous and
bounded. Take Ω ⊆ C(J,Br) such that α(Ω) > 0. By Theorem 2.5.5, we get

α(T (Ω)) = sup
{
α({(Tx)(t) : x ∈ Ω}) : t ∈ J

}
= sup

{
α
({∫ t

0

f(s, x(s))ds : x ∈ Ω
})

: t ∈ J
}
.

From Lemma 2.5.6, it deduces that

α(T (Ω)) ≤ sup
t∈J
{α(tco({f(s, x(s)) : s ∈ [0, t], x ∈ Ω}))}

≤ sup
t∈J
{tα(co(f(J × Ω)))} ≤ βα(f(J × Ω)) ≤ βkα(Ω) < α(Ω).

Obviously, T is a monotone operator on C(J,Br). Note that x0 �CE Tx0.

Lemma 2.2.11 yields that T has a fixed point x ∈ C(J,Br) that is a solution of
equation (2.5.7).

2.5.4 Functional Integral Inclusion

Denote all Lebesgue integrable functions defined on I by L1(I,R). This space
is equipped with the following norm

‖g‖1 =

∫ 1

0

gdµ,

for every g ∈ L1(I,R). We can show that (L1(I,R), ‖ · ‖1) is a Banach space.
In this section, we prove the existence of solutions to a functional integral

inclusion in the following form

f(x) ∈ F (x, f(x)) +

∫ x

0

k(x, s)F(s, f(s))ds, for every x ∈ I, (2.5.9)

where F : I ×R→ R, k : I × I → R are continuous, and F : I ×R→ CL(R). By
solution of 2.5.9, we mean a function f ∈ C(I,R) such that

f(x) = F (x, f(x)) +

∫ x

0

k(x, s)f1(s)ds, for every x ∈ I,

where f1(·) ∈ F(·, f(·)) and f1 ∈ L1(I,R). Firstly, we recall some basic definitions
used in this section.
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Definition 2.5.8. Let (X, d) be a metric space, and T : X → 2X be a multivalued
mapping on X.

(i) T is called upper semi-continuous if for any open subset Y of X, the set
{x ∈ X : T (x) ⊆ Y } is open in X.

(ii) T is said to be totally bounded if for any B ∈ B(X), T (B) is a totally
bounded subset of X.

(iii) T has a closed graph if for lim
n→∞

xn = x∗, lim
n→∞

yn = y∗ and yn ∈ T (xn), we

have y∗ ∈ T (x∗).

Note that if a multivalued map T is totally bounded with nonempty compact
values, then T is upper semi-continuous if and only if T has a closed graph.

Definition 2.5.9. A multivalued map F : I × R → CP(R) is said to be L1-
Carathéodory if

(i) for each x ∈ R, the mapping F(·, x) is measurable,

(ii) for almost all t ∈ I, the mapping F(t, ·) is upper semi-continuous,

(iii) for each ρ > 0, there exists a function gρ ∈ L1(I,R+) such that for all u ∈ R
with |u| ≤ ρ,

|||F(t, u)||| = sup{|v| : v ∈ F(t, u)} ≤ gρ(t), a.e. t ∈ I.

For any function f ∈ C(I,R), consider the selection set

SF(f) = {f1 ∈ L1(I,R) : f1(s) ∈ F(s, f(s)), a.e. s ∈ I}.

In [82], Lasota and Opial showed that if F is L1-Carathéodory, then SF(f) 6= ∅
for each f ∈ C(I,R). They also established the following lemma.

Lemma 2.5.10. Assume that a multivalued map F satisfies the conditions (i),
(ii) of Definition 2.5.9 with SF(f) 6= ∅ for each f ∈ C(I,R). Let G : L1(I,R) →
C(I,R) be a continuous linear mapping. Then G◦SF : C(I,R)→ 2C(I,R) is a closed
graph operator on C(I,R)× C(I,R).

Now we present our main theorem for this section.

Theorem 2.5.11 ([100]). Assume that the maps in the functional integral inclu-
sion 2.5.9 satisfy the following conditions:

(C1) F (·, ·) is continuous on I × R, and F (t, ·) is nondecreasing for every t ∈ I;

(C2) there exists L ∈ [0, 1) such that

|F (x, f)− F (x, g)| ≤ L|f − g|, for each f, g ∈ R, x ∈ I;

(C3) k(·, ·) is continuous on I × I;

(C4) F : I × R→ CP(R) is L1-Carathéodory;
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(C5) SF(·) is monotone: for any f, g ∈ C(I,R) with f �C g and any f1 ∈ SF(f),
there is g1 ∈ SF(g) such that f1(s) ≤ g1(s) for a.e. s ∈ I;

(C6) there exists a positive number r such that

r ≥ ‖F (x, 0)‖C +M‖gr‖1

1− L
,

where M = max{|k(x, y)| : (x, y) ∈ I × I}, the function gr satisfies Defini-
tion 2.5.9 (iii);

(C7) there exists f0 ∈ C(I,R) such that f0 �C h0 for some h0 ∈ C(I,R) with

h0(x) ∈ F (x, f0(x)) +

∫ x

0

k(x, s)F(s, f0(s))ds, for every x ∈ I.

Then the integral inclusion 2.5.9 has at least one solution in C(I,R).

Proof. Take f ∈ C(I,R), and put

T (f)(x) = F (x, f(x)) +

∫ x

0

k(x, s)F(s, f(s))ds, for every x ∈ I. (2)

We recall the following basic result: if f1 ∈ L1(I,R), then the function

F1(x) =

∫ x

0

k(x, s)f1(s)ds

is continuous on I. It implies that the function

F2(x) = F (x, f(x)) + F1(x) = F (x, f(x)) +

∫ x

0

k(x, s)f1(s)ds

is continuous on I for any f1 ∈ SF(f). Hence for each f ∈ C(I,R), we have
T (f) ⊆ C(I,R).

Next, we are going to show that T (f) is closed for each f ∈ C(I,R). Let (hn)n
be a sequence in T (f) and h0 ∈ C(I,R) such that ‖hn− h0‖C → 0 as n→∞. We
need to show that h0 ∈ T (f). Since hn ∈ T (f), there exists fn ∈ SF(f) such that

hn(x) = F (x, f(x)) +

∫ x

0

k(x, s)fn(s)ds, for every x ∈ I.

Consider the operator G : L1(I,R)→ C(I,R) defined by

G(f)(x) =

∫ x

0

k(x, s)f(s)ds, for every x ∈ I.

Obviously, G is continuous and linear. It follows from Lemma 2.5.10 that G ◦SF is
a closed graph operator on C(I,R)×C(I,R). Furthermore, since maxx∈I |(hn(x)−
F (x, f(x))−(h0(x)−F (x, f(x))| → 0 as n→∞, and hn(.)−F (., f(.)) ∈ G◦SF(f),
we have

h0(.)− F (., f(.)) ∈ G ◦ SF(f).
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It implies that there is f0 ∈ SF(f) such that

h0(x)− F (x, f(x)) =

∫ x

0

k(x, s)f0(s)ds, x ∈ I.

Therefore, h0 ∈ T (f).
Next, we are going to prove that T : Br(0) → CL(Br(0)). Take f ∈ Br(0)

and h ∈ T (f). Then there is h1 ∈ SF(f) such that

h(x) = F (x, f(x)) +

∫ x

0

k(x, s)h1(s)ds, for every x ∈ I.

We have

|h(x)| ≤ |F (x, f(x))− F (x, 0)|+ |F (x, 0)|+
∣∣∣ ∫ x

0

k(x, s)h1(s)ds
∣∣∣

≤ L|f(x)|+ ‖F (x, 0)‖C +

∫ x

0

|k(x, s)||‖F(s, f(s))‖|ds

≤ L‖f‖C + ‖F (x, 0)‖C +M‖gr‖1 ≤ r

for every x ∈ I. It implies that h ∈ Br(0). Hence T (f) ∈ CL(Br(0)) for every
f ∈ Br(0).

Take f, h ∈ Br(0) such that f �C h. By (C1),

F (x, f(x)) ≤ F (x, h(x)) for all x ∈ I.

Furthermore, for each f1 ∈ T (f), there exists f2 ∈ SF(f) such that

f1(x) = F (x, f(x)) +

∫ x

0

k(x, s)f2(s)ds, for every x ∈ I.

By (C5), there is h2 ∈ SF(h) such that f2(s) ≤ h2(s) for a.e. s ∈ I. Put

h1(x) = F (x, h(x)) +

∫ x

0

k(x, s)h2(s)ds, for every x ∈ I.

Clearly, h1 ∈ T (h) and f1(x) ≤ h1(x) for every x ∈ I. Hence T is monotone on
Br(0).

Now assume that Ω is a nonempty subset of Br(0) and f ∈ Ω. Take any
function f1 ∈ T (f). Then there exists f2 ∈ SF(f) such that

f1(x) = F (x, f(x)) +

∫ x

0

k(x, s)f2(s)ds, for every x ∈ I.

Fix ε > 0 and choose x, y ∈ I such that |x− y| ≤ ε, we get
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|f1(x)− f1(y)| ≤ |F (x, f(x))− F (y, f(y))|+
∣∣∣ ∫ x

0

k(x, s)f2(s)ds−
∫ y

0

k(y, s)f2(s)ds
∣∣∣

≤ |F (x, f(x))− F (x, f(y))|+ |F (x, f(y))− F (y, f(y))|

+
∣∣∣ ∫ x

0

k(x, s)f2(s)ds−
∫ x

0

k(y, s)f2(s)ds
∣∣∣

+
∣∣∣ ∫ x

0

k(y, s)f2(s)ds−
∫ y

0

k(y, s)f2(s)ds
∣∣∣

≤ L|f(x)− f(y)|+ |F (x, f(y))− F (y, f(y))|

+

∫ x

0

|k(x, s)− k(y, s)||f2(s)|ds+
∣∣∣ ∫ y

x

|k(y, s)||f2(s)|ds
∣∣∣

≤ L|f(x)− f(y)|+ |F (x, f(y))− F (y, f(y))|

+

∫ x

0

|k(x, s)− k(y, s)|gr(s)ds+M
∣∣∣ ∫ y

x

gr(s)ds
∣∣∣

≤ L|f(x)− f(y)|+ |F (x, f(y))− F (y, f(y))|

+

∫ 1

0

|k(x, s)− k(y, s)|gr(s)ds+M |q(x)− q(y)|,

where

q(x) =

∫ x

0

gr(s)ds.

Using given assumptions, we infer that the function F (z, t) is uniformly continuous
on I × [−r, r], and the function q(x) is uniformly continuous on I. Hence, when
ε→ 0, we have

Ψr(F, ε) := sup{|F (x, z)− F (y, z)| : x, y ∈ I, |x− y| ≤ ε, |z| ≤ r} → 0,

Ψr(k, gr, ε) := sup
{∫ 1

0

|k(x, s)− k(y, s)|gr(s)ds : x, y ∈ I, |x− y| ≤ ε
}
→ 0,

Ψ(q, ε) := sup{|q(x)− q(y)| : x, y ∈ I, |x− y| ≤ ε} → 0.

Now, from the obtained estimate, we have

Ψ(f1, ε) ≤ LΨ(f, ε) + Ψr(F, ε) + Ψr(k, gr, ε) + Ψ(q, ε).

It yields

Ψ(T (Ω), ε) = sup
f1∈T (Ω)

Ψ(f1, ε) ≤ L sup
f∈Ω

Ψ(f, ε) + Ψr(F, ε) + Ψr(k, gr, ε) + Ψ(q, ε)

≤ LΨ(Ω, ε) + Ψr(f, ε) + Ψr(k, gr, ε) + Ψ(q, ε),

and consequently,
Ψ0(T (Ω)) ≤ LΨ0(Ω) < Ψ0(Ω).

It follows that the mapping T satisfies all conditions of Theorem 2.3.4. Therefore,
the functional integral inclusion (2.5.9) admits a solution in C(I,R).
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Chapter 3

Fixed points of G-monotone mappings
in Banach spaces

3.1. Preliminaries

It is often preferable to investigate graphs rather than confining ourselves
to partial orders. Jachymski [58] adopted this approach, extending the Banach
contraction principle to metric spaces equipped with a graph.

In this section, we introduce some basic definitions in graph theory.

Definition 3.1.1 ([23, 45, 66]). A graph G is a pair (V (G), E(G)), where the
elements of a nonempty set V (G) are called vertices of G, and E(G) is a set of
paired vertices called edges. If a direction is imposed on each edge, we call it a
directed graph or digraph.

Example 3.1.2. We consider the following graph and digraph.

Figure 1: Graph Figure 2: Digraph

Figure 1 presents a graph G = (V (G), E(G)) with V (G) = {a, b, c, d, e, f, } and
six edges {ae, af, ad, db, dc, cb}.

Figure 2 presents a digraph G = (V (G), E(G)) with V (G) = {a, b, c, d, e, f, }
and E(G) = {(a, e), (a, f), (a, d), (d, b), (d, c)}.

Definition 3.1.3 ([23, 45, 66]). Assume that G = (V (G), E(G)) is a digraph.

(i) G is reflexive if for each x ∈ V (G), (x, x) ∈ E(G).

(ii) G is transitive if for every x, y, z ∈ V (G) with (x, y), (y, z) ∈ E(G), we have
(x, z) ∈ E(G).
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(iii) We call (V ′, E ′) a subgraph of G if V ′ ⊆ V (G), E ′ ⊆ E(G), and x, y ∈ V ′
whenever (x, y) ∈ E ′.

(iv) A (directed) walk (of length k) from x to y in a graph G is a nonempty
alternating sequence v0e0v1e1...ek−1vk of vertices and edges in G such that
v0 = x, vk = y and ei = (vi, vi+1) for all i < k.
A directed path is a directed walk in which all vertices are distinct.

(v) For a, b ∈ V (G), we define G-intervals along walks in the following way:

[a,→)G = {x ∈ V (G) : there is a walk from a to x},
(←, b]G = {x ∈ V (G) : there is a walk from x to b},

[a, b]G = [a,→)G ∩ (←, b]G.

(vi) Let A be a subset of V (G). An element b ∈ V (G) is called an upper bound
of A if a ∈ (←, b]G for every a ∈ A.

(vii) A subset J of V (G) is directed if each finite subset of J has an upper bound
in J .

We can show some G-intervals along walks of the digraph in Example 3.1.2 as
follows:

[a,→)G = {f, e, d, b, c},
(←, f ]G = {a},
[d,→)G = {b, c},
(←, d]G = {a}.

Note that there is also another notion of G-intervals introduced by some au-
thors (see [8, 9, 15]) as follows:

[a,→) := {x ∈ V (G) : (a, x) ∈ E(G)},
(←, b] := {x ∈ V (G) : (x, b) ∈ E(G)},

[a, b] := [a,→) ∩ (←, b],

for any a, b ∈ V (G). We can present some G-intervals of the digraph in Example
3.1.2:

[a,→) = {f, e, d},
(←, f ] = {a},
[d,→) = {b, c},
(←, d] = {a}.

Note that when the digraph G is transitive, G-intervals along walks and G-
intervals coincide.

Obviously, a partial order generates easily a reflexive, transitive digraph but
not every digraph is generated by a partial order. Indeed, we consider the following
examples.
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Example 3.1.4. Let `p denote the space of all p-summable sequences of real
numbers, and let N be a proper subset of N. Take V (G) = `p and define E(G) by

(x, y) ∈ E(G)⇔ xi ≤ yi for all i ∈ N ,

where x = (xi), y = (yi) ∈ `p. Then G is a reflexive and transitive digraph.

Example 3.1.5. Let (X, ‖ · ‖) be a normed space. Define a digraph G with
V (G) = X, and

(x, y) ∈ E(G)⇔ ‖x‖ ≤ ‖y‖
for x, y ∈ X. It is not difficult to show that this digraph is transitive and reflexive.

3.2. The existence of invariant G-intervals

We are now going to show the existence of a G-interval that is invariant under
G-monotone mappings. First, we recall the definitions of G-monotone mappings
and the finite intersection property.

Definition 3.2.1 ([66]). Let (V (G), E(G)) be a digraph. A mapping T : V (G)→
V (G) is said to be G-monotone if (T (x), T (y)) ∈ E(G) whenever (x, y) ∈ E(G),
for any x, y ∈ V (G).

Note that if T is G-monotone, then T (y) ∈ [T (x),→)G whenever y ∈ [x,→)G.

Example 3.2.2. Consider the digraph defined in Example 3.1.4. Fix i0 ∈ N .
Define a map T : `p → `p by

T (x) = (x1, ..., xi0−1, xi0 + 1, xi0+1, ...)

for every x = (x1, ..., xi0−1, xi0 , xi0+1, ...) ∈ `p. It is easy to check that T is G-
monotone.

Definition 3.2.3. A nonempty family A of subsets of a set X is said to satisfy
the finite intersection property if the intersection over any finite subfamily of A is
nonempty.

Lemma 3.2.4 ([102]). Let (V (G), E(G)) be a digraph. Assume that any family
of G-intervals along walks in V (G) having the finite intersection property has
nonempty intersection. If J is a directed subset of V (G), then

⋂
x∈J

[x,→)G 6= ∅.

Proof. Take any finite subset {x1, ..., xn} of J . Since J is directed, there exists a

point x in J such that x ∈ [xi,→)G for every i ∈ {1, ..., n}, i.e., x ∈
n⋂
i=1

[xi,→)G.

By the hypothesis, we have that
⋂
x∈J

[x,→)G 6= ∅.

The following theorem is our main result in this section.

Theorem 3.2.5 ([102]). Let (V (G), E(G)) be a digraph. Assume that any family
of G-intervals along walks in V (G) having the finite intersection property has
nonempty intersection. Let T : V (G) → V (G) be a G-monotone mapping such
that T (c) ∈ [c,→)G for some c ∈ V (G). Then there exists s ∈ V (G) such that
[s, s]G 6= ∅ and T ([s, s]G) ⊆ [s, s]G.
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Proof. Set
I0 = {c, T n(c) : n ∈ N}.

It is not difficult to prove that I0 is a directed set and for each x ∈ I0, T (x) ∈ I0

and T (x) ∈ [x,→)G. We note that if T is a chain of directed subsets of V (G)
containing I0 with the above properties, then

⋃
T is also a directed subset with

the following properties: for each x ∈
⋃
T , T (x) ∈

⋃
T and T (x) ∈ [x,→)G. By

Kuratowski-Zorn’s lemma, there exists a maximal directed set I ⊂ V (G) which
contains I0 and satisfies above properties. It follows from Lemma 3.2.4 that the
set K :=

⋂
x∈I [x,→)G is nonempty. Choose finite subsets {x1, ..., xn} of I and

{y1, ..., yn} of K. Since I is directed,
⋂n
i=1

⋂n
j=1[xi, yj]G is nonempty. It deduces

that K0 :=
⋂
x∈I,y∈K [x, y]G is nonempty. Thus there is s ∈ K0. Clearly, for each

x ∈ I, s ∈ [x,→)G, and hence T (s) ∈ [T (x),→)G. It yields T (s) ∈ [x,→)G for all
x ∈ I, i.e., T (s) ∈ K. Hence T (s) ∈ [s,→)G. Set

I1 = I ∪ {s, T n(s) : n ∈ N}.

It is not difficult to see that I1 is a directed subset of V (G) such that I0 ⊂
I1, T (x) ∈ I1 and T (x) ∈ [x,→)G for each x ∈ I1. By the maximality of I, I1 = I.
It follows that both s, T (s) ∈ I. Therefore, s ∈ [T (s),→)G and T (s) ∈ [s,→)G.

Put H := [s, s]G 6= ∅. Take x ∈ H. Since s ∈ [x,→)G, we have T (s) ∈ [T (x),→
)G and s ∈ [T (s),→)G. Hence s ∈ [T (x),→)G, i.e., T (x) ∈ (←, s]G. On the other
hand, T (x) ∈ [T (s),→)G since x ∈ [s,→)G. Combining with T (s) ∈ [s,→)G yields
T (x) ∈ [s,→)G. Therefore, T (x) ∈ H for all x ∈ H, that is, T (H) ⊆ H.

Remark 3.2.6. Note that for every a, b ∈ K0 we have a ∈ [b,→)G and b ∈ [a,→)G.
Indeed, by the above argument, {a, b} ⊂ I ∩ K. Since a ∈ I, b ∈ K, we have
b ∈ [a,→)G. And a ∈ [b,→)G follows from a ∈ K, b ∈ I.

Furthermore, it is clear that K0 ⊆ [a, b]G. We show that K0 = [a, b]G. For
this purpose, fix t ∈ [a, b]G. Since t ∈ [a,→)G and a ∈ [x,→)G for each x ∈ I,
we have t ∈ [x,→)G for each x ∈ I. In a similar way, t ∈ (←, y]G for all y ∈ K.
Hence t ∈

⋂
x∈I,y∈K [x, y]G = K0. It implies [a, b]G ⊆ K0 and thus K0 = [a, b]G. In

particular, K0 = [s, s]G and T (K0) ⊆ K0.

We obtain the following corollary in the case of G-intervals.

Corollary 3.2.7 ([102]). Let (V (G), E(G)) be a transitive digraph. Assume
that any family of G-intervals in V (G) having the finite intersection property has
nonempty intersection. Let T : V (G) → V (G) be a G-monotone mapping such
that (c, T (c)) ∈ E(G) for some c ∈ V (G). Then there exists s ∈ V (G) such that
[s, s] is nonempty and invariant under the mapping T .

3.3. Fixed points of monotone G-nonexpansive mappings

In this section, we establish fixed point theorems for monotone G-nonexpansive
mappings.

Definition 3.3.1. Let (X, ‖ · ‖) be a normed vector space endowed with a di-
graph G = (V (G), E(G)). A map T : V (G) → V (G) is said to be monotone
G-nonexpansive if and only if T is G-monotone and

‖T (x)− T (y)‖ ≤ ‖x− y‖

Dau Hong Quan 36



3.3. FIXED POINTS OF MONOTONE G-NONEXPANSIVE MAPPINGS

for all x, y ∈ X and y ∈ [x,→)G.

Clearly, a G-monotone nonexpansive mapping is not necessarily continuous.
Indeed, consider the following example.

Example 3.3.2. On R2, let

‖x‖ := (x2
1 + x2

2)
1
2

for every x = (x1, x2) ∈ R2. With this norm, (R2, ‖ · ‖) is a Banach space. Next,
we define a digraph G = (V (G), E(G)) with V (G) = R2, and(

(x1, x2), (y1, y2)
)
∈ E(G)⇔ x1 = x2 ≤ y1 = y2

for (x1, x2), (y1, y2) ∈ R2. The function T is defined as follows:

T (x1, x2) =

{
(1, 1) if x1 ≤ x2

(0, 0) if x1 > x2

for every (x1, x2) ∈ R2.

Then T is monotone G-nonexpansive on V (G), and it is not continuous at any
point (u, u) ∈ R2.

Recently, the fixed point theory for monotone G-nonexpansive mappings has
been investigated in the case of G being transitive. The initial study was carried
out in Banach spaces equipped with a digraph G (see [7, 18, 66, 115]). Their results
were obtained by applying iterative techniques and successive approximations.

Our approach to studying the fixed point problem for monotone G-nonexpan-
sive mappings relies on extending established results for nonexpansive mappings.
Clearly, proving any result using set-theoretical techniques in this context is chal-
lenging. To overcome this problem, it is essential to identify a subset such that
a monotone G-nonexpansive mapping is nonexpansive on it. The intent behind
presenting this section is to convey this significance. Subsequently, using Theorem
3.2.5 as a tool, we give some fixed-point theorems for monotone G-nonexpansive
mappings in Banach spaces.

Firstly, observe that if we take X = V (G) a topological Hausdorff space, and
consider a partial order �:= E(G), we obtain Theorem 1 in [47] as a corollary. In
this case, [s, s]G = {s} reduces to a fixed point of T .

Corollary 3.3.3. Let X be a Hausdorff topological space with a partial order �
for which order intervals are compact, and let T : X → X be monotone. If there
exists c ∈ X such that c � T (c), then T has a fixed point.

Furthermore, setting T the so-called G-regular monotone mapping of X (see
[59, Definition 4]) yields Theorem 1 in [59]. But Theorem 3.2.5 is wider. From
now on, we use the notation (X, ‖ · ‖) to represent a Banach space equipped with
a digraph G = (V (G), E(G)), and C is a subset of X such that C = V (G).

Recall that a Banach space X has the fixed point property for nonexpan-
sive mappings (FPP, for short) if every nonexpansive (i.e., 1-Lipschitz) mapping
T : C → C acting on a bounded closed convex subset C of X has a fixed
point. There is an extensive literature on metric fixed point theory originated
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in the 1965 existence theorems of Browder, Göhde and Kirk, see [54, 72, 113] for
more details. In 2006, Garćıa Falset, Lloréns Fuster and Mazcuñan Navarro [48]

showed that if X is a reflexive Banach space, and Γ′X(0) := lim
t→0+

ΓX(t)
t

< 1, where

ΓX = sup
{

infn>1

(1

2
(‖x1 + txn‖ + ‖x1 − txn‖) − 1

)
: (xn) ⊂ B(0, 1), xn ⇀ 0

}
is

the modulus of nearly uniform smoothness of X, then X has FPP. In particular,
uniformly nonsquare Banach spaces have FPP (recall that a Banach space is uni-
formly nonsquare if supx,y∈SX min{‖x+y‖, ‖x−y‖} < 2). However, it is well known
that there exist Banach spaces, for example c0, for which not every bounded closed
convex subset has the fixed point property. This fact prompted many researchers
to study fixed points of nonexpansive mapping under the stronger assumption
of weak compactness of C. A Banach space X is said to have the weak fixed
point property for nonexpansive mappings (WFPP, for short) if every nonexpan-
sive mapping T : C → C acting on a convex and weakly compact subset C of X
has a fixed point. The weak topology can be replaced by some other topologies
such as the weak∗ topology or the topology of convergence in measure. In the
theorem below we restrict ourselves to the weak topology.

Theorem 3.3.4 ([102]). Let (X, ‖ · ‖) be a Banach space with a digraph G, and
let C be a weakly compact convex subset of X such that C = V (G). Assume that
G-intervals along walks are closed and convex, and X has WFPP. If T : C → C
is a monotone G-nonexpansive mapping, and there exists c ∈ V (G) such that
T (c) ∈ [c,→)G, then there exists x0 ∈ C such that T (x0) = x0.

Proof. Since C is weakly compact and G-intervals along walks are convex and
closed, any family of such G-intervals in C having the finite intersection property
has nonempty intersection. Now, it follows from Theorem 3.2.5 that there exists
s ∈ C such that [s, s]G is a nonempty convex and weakly compact subset of C. If
x, y ∈ [s, s]G, then x ∈ (←, s]G, y ∈ [s,→)G, and consequently y ∈ [x,→)G. Thus
each monotone G-nonexpansive mapping is nonexpansive on [s, s]G. Since X has
WFPP, there exists x0 ∈ C such that T (x0) = x0.

In particular, Theorem 3.3.4 holds if X is uniformly nonsquare, uniformly
noncreasy (see [98]) or has the weak normal structure.

Remark 3.3.5. The assumption that G-intervals along walks are convex appears
to be strong. However, if the digraph G is transitive, then G-intervals along
walks coincide with the “usual” G-intervals as defined in Section 3.1. Note that
transitivity of digraphs is a common assumption in this branch of fixed point
theory (compare [11, 13]).

Remark 3.3.6. Recall that a subset C of a Banach space X has the hereditary
fixed point property for nonexpansive mappings (HFPP, for short) if every nonex-
pansive mapping T : C → C has a fixed point in any nonempty bounded closed
and convex subset of C that is invariant under T. Notice that Theorem 3.3.4
remains true if we replace the assumption “X has WFPP” by “C has HFPP”.
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3.4. Fixed points of monotone G-asymptotically nonexpan-
sive mappings

The second interesting class of mappings that finds its root in the work of
Goebel and Kirk [52] are asymptotic nonexpansive mappings. We are going to
extend our results to this case.

Definition 3.4.1. Let (X, ‖·‖) be a normed vector space endowed with a digraph
G and let C be a subset of X. A mapping T : C → C is said to be monotone
G-asymptotically nonexpansive if T is G-monotone and there exists a sequence of
positive numbers {kn} such that lim

n→∞
kn = 1 and

‖T n(x)− T n(y)‖ ≤ kn‖x− y‖

for any n ∈ N, and any x, y ∈ C such that y ∈ [x,→)G.

As in the case of nonexpansive mappings, a Banach space X has the weak fixed
point property for asymptotically nonexpansive mappings if every asymptotically
nonexpansive mapping T : C → C acting on a weakly compact and convex subset
C of X has a fixed point. The following theorem is a rather obvious counterpart
of Theorem 3.3.4.

Theorem 3.4.2 ([102]). Let (X, ‖ · ‖) be a Banach space with a digraph G, and
let C be a weakly compact convex subset of X such that C = V (G). Assume that
G-intervals along walks are convex and closed. Let T : C → C be a monotone
G-asymptotically nonexpansive mapping. If X has the weak fixed point property
for asymptotically nonexpansive mappings, and there exists c ∈ V (G) such that
T (c) ∈ [c,→)G, then T has a fixed point in C.

Proof. Since C is weakly compact and G-intervals along walks are convex and
closed, any family of such G-intervals in C having the finite intersection property
has nonempty intersection. Theorem 3.2.5 shows that there exists s ∈ C such
that [s, s]G is a nonempty convex and weakly compact subset of C and T ([s, s]G) ⊆
[s, s]G. Since T is asymptotically nonexpansive on [s, s]G and X has the weak fixed
point property for asymptotically nonexpansive mappings, there exists x0 ∈ C
such that T (x0) = x0.

Fixed point theory for asymptotically nonexpansive mappings is worse under-
stood than its nonexpansivity counterpart. The original result from [52] stating
that asymptotically nonexpansive mappings have the fixed point property in each
closed convex and bounded subset of a uniformly convex space was generalized
in [118] when X is nearly uniformly convex, in [86] when X satisfies the uniform
Opial condition, and in [76] when X has uniform normal structure. In 2012, it
was proved in [116] that the super fixed point property of X for nonexpansive
mappings is equivalent to the super fixed point property for asymptotically non-
expansive mappings (a Banach space X has the super fixed point property for
nonexpansive mappings if every Banach space Y which is finitely representable
in X has FPP). In particular, Theorem 3.4.2 is true if X is uniformly nonsquare,
uniformly noncreasy or any ψ-direct sum X1⊕ψX2 of uniformly nonsquare Banach
spaces (see [117, Theorem 3.7]).
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Remark 3.4.3. Even in the case of a uniformly convex space Theorem 3.4.2 is
stronger that the corresponding result in [10], where G is a partial order and
T : C → C is a continuous monotone G-asymptotically nonexpansive mapping.

3.5. Common fixed point for a commutative family of mono-
tone mappings

In 2018, Esṕınola and Wísnicki [47] proved the existence of a common fixed
point for a commutative family of monotone mappings of a Hausdorff topological
space with a partial order. In this section, we generalize it and obtain an invariance
theorem for commutative families of G-monotone mappings on a set equipped with
a digraph.

Theorem 3.5.1 ([102]). Let (V (G), E(G)) be a digraph, and F be a commutative
family of G-monotone mappings from V (G) into itself. Assume that any family
of G-intervals along walks in V (G) having the finite intersection property has
nonempty intersection. Moreover, there exists c ∈ V (G) such that T (c) ∈ [c,→)G
for every T ∈ F . Then there is s ∈ V (G) such that [s, s]G 6= ∅ and T ([s, s]G) ⊆
[s, s]G for every T ∈ F .

Proof. Let

F1 = {T1 ◦ T2 ◦ ... ◦ Tn : Ti ∈ F , i = 1, ..., n, n ∈ N}, L0 = {c, T (c) : T ∈ F1}.

By commutativity and monotonicity of F , it is not difficult to see that for each
T ∈ F1, T is G-monotone, and L0 is a directed set. Moreover, T (x) ∈ L0 and
T (x) ∈ [x,→)G for every T ∈ F1, x ∈ L0. By an argument analogous to that used
in the proof of Theorem 3.2.5, there exists s ∈ V (G) such that [s, s]G is nonempty
and T ([s, s]G) ⊆ [s, s]G for every T ∈ F1. Since F ⊆ F1, the proof is complete.

Corollary 3.5.2 ([102]). Let (V (G), E(G)) be a transitive digraph, and F be
a commutative family of G-monotone mappings from V (G) into itself. Assume
that any family of G-intervals in V (G) having the finite intersection property has
nonempty intersection. Furthermore, suppose that there exists c ∈ V (G) such that
(c, T (c)) ∈ E(G) for T ∈ F . Then there is s ∈ V (G) such that [s, s]G is nonempty
and invariant under every T ∈ F .

In 1974, Bruck [30] proved that any commutative family of nonexpansive self-
mapping of a closed convex subset C of a Banach space has a common fixed point
if C is weakly compact or bounded and separable provided that C has the HFPP
for nonexpansive mappings. The following theorem is a counterpart of Theorem
3.3.4.

Theorem 3.5.3 ([102]). Let (X, ‖ · ‖) be a Banach space with a digraph G, C
a weakly compact convex subset of X such that C = V (G), and F a nonempty
commutative family of monotone G-nonexpansive mappings from C into C. As-
sume that G-intervals along walks are convex and closed. If X has the WFPP for
nonexpansive mappings, and there exists c ∈ V (G) such that T (c) ∈ [c,→)G for
every T ∈ F , then there is x0 ∈ C such that T (x0) = x0 for every T ∈ F .
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Proof. Since C is weakly compact and G-intervals along walks are convex and
closed, any family of such G-intervals in C having the finite intersection property
has nonempty intersection. Theorem 3.5.1 now shows that there exists s ∈ C
such that [s, s]G is a nonempty convex and weakly compact subset of C, and
T ([s, s]G) ⊆ [s, s]G for any T ∈ F . Since T is nonexpansive on [s, s]G and X has
WFPP (and hence C has HFPP), it follows from Theorem 1 in [30] that there
exists x0 ∈ C such that T (x0) = x0 for every T ∈ F .

In particular, Theorem 3.5.3 holds if X is uniformly nonsquare, uniformly
noncreasy or has weak normal structure.

There exists relatively few results concerning the existence of common fixed
points for commutative families of asymptotically nonexpansive mappings. Yet,
it was proved in [116, Theorem 3.3] that if a Banach space X has the super
fixed point property for nonexpansive mappings, then any commutative family of
asymptotically nonexpansive mappings acting on a closed convex and bounded
subset of X has a common fixed point. Combining it with Theorem 3.5.1 yields

Theorem 3.5.4 ([102]). Let (X, ‖.‖) be a Banach space with a digraph G, C
a bounded closed convex subset of X such that C = V (G), and F a nonempty
commutative family of monotone G-asymptotically nonexpansive mappings from
C into C. Assume that G-intervals along walks are convex and closed. If X
has the super fixed point property for nonexpansive mappings, and there exists
c ∈ V (G) such that T (c) ∈ [c,→)G for every T ∈ F , then there is x0 ∈ C such
that T (x0) = x0 for every T ∈ F .

Proof. Note that X is superreflexive since it has the super fixed point property
for nonexpansive mappings. Hence C is weakly compact and so that any family of
G-intervals along walks in C having the finite intersection property has nonempty
intersection. Furthermore, there exists s ∈ C such that [s, s]G is a nonempty
convex and weakly compact subset of C that is invariant under F . Since X has
the super fixed point property for nonexpansive mappings, it follows from Theorem
3.3 in [116] that there exists x0 ∈ C such that T (x0) = x0 for every T ∈ F .

3.6. Application

Let X = L2([0, 1],R) be the space of measurable functions x : [0, 1]→ R such that∫ 1

0

x2(t)dt <∞.

Note that X is a Hilbert space with the norm

‖x‖ =
(∫ 1

0

x2(t)dt
)1/2

.

Fix α ∈ (0, 1), and consider a digraph G on X as follows:

(x, y) ∈ E(G)⇔ x(s) ≤ y(s) almost everywhere in [0, α],

where x, y ∈ X. Clearly, the digraph is reflexive, transitive and G-intervals are
convex. We are going to show that G-intervals are also closed. For this purpose,
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we take G-interval of the form [a,→) = {x ∈ X : (a, x) ∈ E(G)}, for (←, a] =
{x ∈ X : (x, a) ∈ E(G)} we proceed analogously. Assume that (xn)n is a sequence
in [a,→) such that xn → x as n→∞. We prove that x ∈ [a,→), i.e. a(t) ≤ x(t)

for a.e. on [0, α]. For each n ∈ N, let Jn = {t ∈ [0, α] : a(t)− x(t) >
1

n
}. We have

0 ≤ lim
m→∞

∫
Jn

(xm(t)− a(t))dt =

∫
Jn

(x(t)− a(t))dt ≤ − 1

n
µ(Jn) ≤ 0,

and hence µ(Jn) = 0. Thus µ(
⋃∞
n=1 Jn) = 0, implying that x(t)− a(t) ≥ 0 a.e. on

[0, α].
Put ∆ := {(t, s) : 0 ≤ s ≤ t ≤ 1}. Suppose that g ∈ X, F : ∆ × X → R is

measurable in its first coordinate and the following conditions are satisfied:

(i) For almost every (t, s) ∈ ∆α := {(t, s) : 0 ≤ s ≤ t ≤ α}, x, y ∈ X such that
(x, y) ∈ E(G), we have F (t, s, x) ≤ F (t, s, y);

(ii) For almost every (t, s) ∈ ∆, x, y ∈ X, (x, y) ∈ E(G), we have |F (t, s, x) −
F (t, s, y)| ≤ |x(s)− y(s)|;

(iii) There exists a non-negative function h(·, ·) ∈ L2([0, 1]× [0, 1]) and β ∈ [0, 1
2
)

such that |F (t, s, x)| ≤ h(t, s) + β|x(s)| for almost every (t, s) ∈ ∆ and
x ∈ X.

Define

Tx(t) = g(t) +

∫ t

0

F (t, s, x)ds, t ∈ [0, 1], (3.6.1)

and suppose that t ∈ [0, 1], t 7→
∫ t

0
F (t, s, x)ds is measurable for each x ∈ X.

Clearly, T is an operator from L2([0, 1],R) to itself. We have

‖T (x)‖2 =

∫ 1

0

∣∣∣(g(t) +

∫ t

0

F (t, s, x)ds
∣∣∣2dt

≤ 2

∫ 1

0

|g(t)|2dt+ 2

∫ 1

0

∫ t

0

|F (t, s, x)|2dsdt

≤ 2

∫ 1

0

|g(t)|2dt+ 2

∫ 1

0

∫ t

0

|h(t, s) + β|x(s)||2dsdt

≤ 2

∫ 1

0

|g(t)|2dt+ 2

∫ 1

0

∫ 1

0

|h(t, s) + β|x(s)||2dsdt

≤ 2

∫ 1

0

|g(t)|2dt+ 4

∫ 1

0

∫ 1

0

|h(t, s)|2dsdt+ 4β2

∫ 1

0

∫ 1

0

|x(s)|2dsdt

≤ 2

∫ 1

0

|g(t)|2dt+ 4

∫ 1

0

∫ 1

0

|h(t, s)|2dsdt+ 4β2‖x‖2

We choose r > 0 such that

r2 ≥ 1

1− 4β2

(
2

∫ 1

0

|g(t)|2dt+ 4

∫ 1

0

∫ 1

0

|h(t, s)|2dsdt
)
.

Thus we have that if ‖x‖ ≤ r then ‖T (x)‖ ≤ r. Therefore T (Br(0)) ⊆ Br(0).

Dau Hong Quan 42



3.6. APPLICATION

By condition (i), it is easy to see that T is G-monotone. For x, y ∈ X such
that (x, y) ∈ E(G), we have

‖Tx− Ty‖2 =

∫ 1

0

(Tx(t)− Ty(t))2dt =

∫ 1

0

(∫ t

0

(F (t, s, x)− F (t, s, y)ds
)2

dt

≤
∫ 1

0

(∫ t

0

|x(s)− y(s)|ds
)2

dt ≤
∫ 1

0

(∫ 1

0

|x(s)− y(s)|ds
)2

dt

=

∫ 1

0

‖x− y‖2dt = ‖x− y‖2.

This implies that T is a monotone G-nonexpansive operator. From these, we
get the following result which is the mixture of fixed point theorems for nonex-
pansive and monotone mappings. Notice that in condition (i) we assume that
F (t, s, x) ≤ F (t, s, y) for almost every (t, s) ∈ ∆α only, and thus F does not need
to be monotone on the whole ∆.

Theorem 3.6.1 ([102]). Assume that the above conditions (i)-(iii) are satisfied.
If g(t) +

∫ t
0
F (t, s, 0)ds ≥ 0 for almost every t ∈ [0, α], then the Volterra type

integral equation

x(t) = g(t) +

∫ t

0

F (t, s, x)dt, t ∈ [0, 1],

has a solution in L2([0, 1],R) that is non-negative almost everywhere on [0, α].

Proof. We consider the operator T defined by (3.6.1) on the closed ball Br(0) with
the radius r large enough so that T (Br(0)) ⊆ Br(0). Put

L = {Br(0) ∩ I : I is a G-interval in L2([0, 1],R)}.

Since Br(0) is weakly compact in L2([0, 1],R), any subfamily of L having the
finite intersection property has nonempty intersection. The condition g(t) +∫ t

0
F (t, s, 0)ds ≥ 0 implies T (0)(t) ≥ 0 for almost every t ∈ [0, α], i.e., (0, T (0)) ∈

E(G). It is well known that L2([0, 1],R) has the fixed point property for nonex-
pansive mappings. Therefore, the conclusion follows from Theorem 3.3.4.
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Chapter 4

Fixed points of G-monotone mappings
in geodesic spaces

In the results of Chapter 3, the assumption “Any family of G-intervals in
V (G) of a digraph G = (V (G), E(G)) having the finite intersection property has
a nonempty intersection” plays an important role in our arguments. In this
chapter, we are going to show that V (G) admits the above assumption for any
family of nonempty bounded closed convex G-intervals if we consider V (G) as
a uniformly convex geodesic space X. Next, we establish the results regarding
the existence of fixed points for monotone G-nonexpansive mappings and mono-
tone G-nonexpansive multivalued mappings in geodesic spaces with a digraph
G = (V (G), E(G)). First, we recall some basic notions about geodesic spaces and
uniform convexity.

4.1. Preliminaries

Let (X, d) be a metric space. The space X is said to admit the midpoints if
for every x, y ∈ X, there exists a point denoted by m(x, y) ∈ X, called a midpoint
of x and y, satisfying

d(x,m(x, y))) = d(y,m(x, y)) =
1

2
d(x, y).

A geodesic path (or simply a geodesic) in X is a path γ : [0, l] ⊆ R → X such
that γ is an isometry. If γ is a geodesic path such that γ(0) = x and γ(l) = y, we
say that γ joins x and y, and the image of γ is called a geodesic segment from x
to y, denoted by [x, y].

The space X is a (uniquely) geodesic space if any two points in X are joined
by a (uniquely) geodesic path. It is well-known that any complete metric space
which admits midpoints is a geodesic space. We refer to [27] for details on geodesic
spaces.

Let X be a uniquely geodesic space. A point z ∈ X belongs to the unique
geodesic segment [x, y] if and only if there exists a unique α ∈ [0, 1] such that

d(x, z) = (1− α)d(x, y) and d(z, y) = αd(x, y),

and we write z = αx ⊕ (1 − α)y. For α = 1/2 we get the midpoint m(x, y) of x
and y.

A set C ⊂ X is convex if geodesic segments [x, y] ⊂ C for any x, y ∈ C.
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4.1. PRELIMINARIES

Example 4.1.1. 1) The metric spaces (Rk, d), (Rk, d1), (Rk, d2) presented in
Example 2.1.9 are uniquely geodesic spaces.

2) Examples of nonlinear uniquely geodesic spaces include Hadamard manifolds
[31] and CAT(0) spaces [70].

Let us discuss some notions regarding the convexity of the metric d. The
simplest form of this metric convexity requires balls to be convex, or the mapping
x 7→ d(x, y) to be convex for every fixed y ∈ X. It is not difficult to see that both
conditions are equivalent in normed spaces with strictly convex norms (in meaning
that if x 6= y and ‖x‖ = ‖y‖ = 1, we have ‖x + y‖ < 2). However, Busemann
and Phadke [32] showed that there exist metric spaces whose balls are convex but
its metric is not. After that, Foertsch [49] proved that in Busemann spaces ([19,
Definition 1.1.4]) both concepts are equivalent. Recall that a Busemann space
(X, d) (also known as a hyperbolic metric space, see [104]) is a uniquely geodesic
space (X, d) such that

d(tx1 ⊕ (1− t)x2, ty1 ⊕ (1− t)y2) ≤ td(x1, y1) + (1− t)d(x2, y2),

for all x1, x2, y1, y2 in X and t ∈ [0, 1].
The study of a stronger form of convexity in Banach spaces has appeared for

a long time. The notion of uniform convexity for Banach spaces was defined by
Clarkson [35] as follows: a Banach space (X, ‖ · ‖) is said to be uniformly convex
if for every ε ∈ (0, 2], there exists δ(ε) > 0 such that for any two points x, y ∈ X
with ‖x‖ = ‖y‖ = 1, if ‖x− y‖ ≥ ε, then ‖x+y

2
‖ ≤ 1− δ(ε).

After that, there have been many efforts to define uniformly convex structures
on non-linear spaces. In 2008, Gelander, Karlsson and Margulis [51] considered
strictly convex geodesic spaces as follows: a uniquely geodesic space (X, d) is said
to be strictly convex if d(a, 1

2
x⊕ 1

2
y) < max{d(a, x), d(a, y)} for every a, x, y ∈ X

with d(x, y) > 0. Then X is called weakly uniformly convex if for any a ∈ X, the
modulus of convexity

δ(a, r, ε) = inf
{
r − d(a,

1

2
x⊕ 1

2
y) : d(a, x) ≤ r, d(a, y) ≤ r, d(x, y) ≥ εr

}
> 0

for any ε > 0, r > 0. They also called X uniformly convex if ∀ε > 0,∃η(ε) > 0
such that ∀r > 0, x ∈ X, δ(x, r, ε) ≥ η(ε)r.

In [63], Kell stated that a metric space X admitting midpoints is uniformly
p-convex if for every ε > 0 there exists ρp(ε) ∈ (0, 1) such that for all x, y, a ∈
X satisfying d(x, y) > εMp(d(x, a), d(y, a)) for p > 1, and d(x, y) > |d(x, a) −
d(y, a)|+ εM1(d(x, a), d(y, a)) for p = 1, we have

d(a,m(x, y)) ≤ (1− ρp(ε))Mp(d(x, a), d(y, a)),

where Mp(t, u) =
(
tp/2 + up/2

)1/p

, and M∞(t, u) = max{t, u}. He also proved

that any uniformly p-convex space (p ≥ 1) is uniformly ∞-convex. It is not
difficult to see that any uniformly ∞-convex uniquely geodesic space is uniformly
convex in the sense of Gelander–Karlsson–Margulis.

With p ∈ (1,∞), p-uniformly convex geodesic spaces with parameter k > 0, as
defined by Naor and Silberman in [95], are also special cases of the two definitions

Dau Hong Quan 45



4.1. PRELIMINARIES

mentioned above. Recently, Kuwae [81], based on the approach of Naor and
Silberman, studied spaces with p-uniform convexity similar to that of Banach
spaces.

In 2015, Leuştean and Nicolae [83] defined weak uniform convexity in an al-
ternative way: A geodesic space (X, d) is weakly uniformly convex if there exists
a mapping δ′ : X × (0,∞) × (0, 2] → (0, 1] such that for any a ∈ X, r > 0,
ε ∈ (0, 2], for every x, y ∈ X, if d(a, x) ≤ r, d(a, y) ≤ r, and d(x, y) > 0 then
d(a,m(x, y)) ≤ (1 − δ′(a, r, ε))r. Such a mapping δ′ is referred to as a modulus
of weak uniform convexity. In their paper, they also assumed that for all a ∈ X,
ε ∈ (0, 2], there exists s > 0 such that inf

r≥s
δ′(a, r, ε) > 0. We can easily prove

that any uniformly ∞-convex space is weakly uniformly convex in the sense of
Leuştean–Nicolae. Moreover, in strictly convex uniquely geodesic space (X, d), if
X is weakly uniformly convex in the sense of Gelander–Karlsson–Margulis, then
X is weakly uniformly convex in the sense of Leuştean–Nicolae. Indeed, we can
choose the function δ′(·, ·, ·) defined by δ′(a, r, ε) := inf{r − d(a, 1

2
x⊕ 1

2
y) : x, y ∈

X, d(a, x) ≤ r, d(a, y) ≤ r, d(x, y) ≥ εr}. This function is also used in the research
conducted by Dehaish and Khamsi [37] while investigating the existence of fixed
points for monotone nonexpansive mappings in hyperbolic metric spaces.

Recently, Quan [99] introduced p-uniformly convex structure for a hyperbolic
metric space as follows: assume that (X, d) is a hyperbolic metric space, p ≥ 2.
For each a ∈ X, r > 0 and ε ≥ 0, we set

ψ(a, r, ε) = inf
{1

2
dp(a, x) +

1

2
dp(a, y)− dp

(
a,

1

2
x⊕ 1

2
y
)}
,

where the infimum is taken over all x, y ∈ X such that d(a, x) ≤ r, d(a, y) ≤ r
and d(x, y) ≥ rε. We say that (X, d) is p-uniformly convex (p-UC for short) if

cX = inf
{ψ(a, r, ε)

rpεp
: a ∈ X, r > 0, ε > 0

}
> 0.

Clearly, any hyperbolic metric space with p-uniform convexity is weakly uniformly
convex in the sense of Leuştean-Nicolae. Indeed, all we need is to choose the
function δ′(a, r, ε) := cXε

p/p.
In this chapter, we drop the assumption about hyperbolicity of the space and

define uniform convexity in the same way as Dehaish and Khamsi did.

Definition 4.1.2. Let (X, d) be a uniquely geodesic metric space. For any a ∈ X,
r > 0 and ε > 0, define

Da(r, ε) = {(x, y) ∈ X ×X : d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε},

and let

δ(a, r, ε) = inf
{

1− 1

r
d
(1

2
x⊕ 1

2
y, a
)

: (x, y) ∈ Da(r, ε)
}
.

In the above, we adopt the convention that inf ∅ = 1.

(i) We say that X is weakly uniformly convex (WUC for short) if δ(a, r, ε) > 0
for any a ∈ X, r > 0, and ε > 0.

(ii) We say that X is uniformly convex (UC for short) if for every s > 0 and
ε > 0, there exists η(s, ε) > 0 such that δ(a, r, ε) > η(s, ε) > 0 for any
a ∈ X, r > s.
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Let us recall and prove some properties of uniformly convex geodesic metric
spaces. Most of these results were presented by us in [99], [101].

Lemma 4.1.3. Let (X, d) be a uniquely geodesic space. Let a ∈ X, r > 0, and
ε ≥ 0.

(a) δ(a, r, 0) = 0, and δ(a, r, ·) is an increasing function on [0, 2);

(b) Assume that r2 ≥ r1 > 0. Then

1− r2

r1

(1− δ(a, r2, ε
r1

r2

)) ≤ δ(a, r1, ε);

(c) Suppose that X is WUC and tn > 0 for all n ≥ 1. If lim
n→∞

δ(a, r, tn) = 0 for

a fixed a ∈ X and r > 0, then inf
n≥1

tn = 0.

Proof. It is not difficult to show (a) and (b). We are going to prove (c). Assume
that lim

n→∞
δ(a, r, tn) = 0 and inf

n≥1
tn 6= 0. Then there exists α such that

0 < α ≤ inf
n≥1

tn.

Consequently, α ≤ tn for all n ≥ 1. Since the function δ(a, r, ε) is increasing of ε,
we have

δ(a, r, α) ≤ δ(a, r, tn), (4.1.1)

for every n ≥ 1. Taking the limit on both sides of (4.1.1) as n→∞, we have

0 < δ(a, r, α) ≤ lim
n→∞

δ(a, r, tn).

It contradicts lim
n→∞

δ(a, r, tn) = 0. Therefore, inf
n≥1

tn = 0.

Notice that if a uniquely geodesic metric space X is uniformly convex, then all
balls are convex. In fact, we have a stronger conclusion.

Lemma 4.1.4. Let (X, d) be a complete uniquely geodesic metric space. Let r > 0,
a ∈ X.

i) Assume that X is WUC. Let t ∈ [α, β], where 0 < α ≤ β < 1. If

d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε

for some ε > 0, x, y ∈ X, then there exists δ(a, r, 2εmin{α, 1− β}) ∈ (0, 1)
such that

d(a, (1− t)x⊕ ty) ≤ r
(

1− δ(a, r, 2εmin{α, 1− β})
)
.

ii) Assume that tn ∈ [α, β] for every n ≥ 1, where 0 < α ≤ β < 1, and (xn)n,
(yn)n are two sequences in X such that lim sup

n→∞
d(a, xn) ≤ r, lim sup

n→∞
d(a, yn) ≤

r, and lim
n→∞

d
(
a, tnxn⊕ (1− tn)yn

)
= r. If X is UC, then lim

n→∞
d(xn, yn) = 0.
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Proof. (i) Take ε > 0, x, y ∈ X. Without loss of generality we may assume that
t < 1/2. Let zt = (1− t)x⊕ ty and z2t = (1− 2t)x⊕ 2ty so that

d(x, zt) = td(x, y), d(y, zt) = (1− t)d(x, y),

and
d(x, z2t) = 2td(x, y), d(y, z2t) = (1− 2t)d(x, y).

Note that d(zt, z2t) = td(x, y). Hence d(x, zt) = d(zt, z2t) = td(x, y) = 1/2d(x, z2t).
It implies zt = 1

2
x⊕ 1

2
z2t. Since t ≥ min{α, 1− β}, we have

d(x, z2t) = 2td(x, y) ≥ 2rεmin{α, 1− β}.

Since X is WUC, there exists δ(a, r, 2εmin{α, 1− β}) > 0

d(a, zt) ≤ r(1− δ(a, r, 2εmin{α, 1− β})).

(ii) For each n ≥ 1, define

rn = max{d(a, xn), d(a, yn)}.

Hence

lim sup
n→∞

rn = lim sup
n→∞

max{d(a, xn), d(a, yn)}

= max{lim sup
n→∞

d(a, xn), lim sup
n→∞

d(a, yn)} ≤ r.

We note that the sequences (d(a, xn))n and (d(a, yn))n are bounded so that there
exists R > 0 such that rn ≤ R for all n ≥ 1.

Case 1. If lim sup
n→∞

rn = 0, then lim sup
n→∞

d(a, xn) = lim sup
n→∞

d(a, yn) = 0. It

deduces that lim
n→∞

d(xn, yn) = 0.

Case 2. Let d = lim sup
n→∞

rn > 0. Without loss of generality, we assume that

lim
n→∞

d(xn, yn) 6= 0. Then there exists ε > 0 and subsequences (xnk)k, (ynk)k, (rnk)k

such that
d(xnk , ynk) ≥ ε and rnk > d− ε > 0

for any k ≥ k0. We have

d(xnk , ynk) ≥ ε ≥ rnk
ε

R
.

SinceX is UC and (i) holds, we have that there exists η
(
d−ε, 2 min{α, 1−β} ε

R
)
)
∈

(0, 1) such that

d
(
a, tnkxnk ⊕ (1− tnk)ynk

)
≤ rnk

(
1− δ(a, rnk , 2 min{α, 1− β} ε

R
)
)

< rnk

(
1− η(d− ε, 2 min{α, 1− β} ε

R
)
)

for any k ≥ k0. Taking limsup as k →∞, we get

r ≤ d
(

1− η(d− ε, 2 min{α, 1− β} ε
R

)
)
< r,

which is the desired contradiction. Therefore, lim
n→∞

d(xn, yn) = 0.
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The following theorem has been proved in [70] in the case of hyperbolic uni-
formly convex spaces.

Theorem 4.1.5. Let (X, d) be a complete uniquely geodesic metric space, C a
nonempty closed convex subset of X, and a ∈ X. Assume that X is UC. Let
d(a, C) = inf{d(a, y) : y ∈ C}. Then there exists a unique c ∈ C such that
d(a, C) = d(a, c).

Proof. If d(a, C) = 0, then there exists a sequence (xn)n of elements of C that tends
to a, and since C is closed, c := a ∈ C. Thus we can assume that r = d(a, C) > 0.
By definition of infimum, there exists xn ∈ C such that d(a, xn) ≤ (1 + 1

n
)r for

every n ≥ 1. We are going to prove that (xn)n is a Cauchy sequence. Assume
otherwise that the sequence (xn)n is not Cauchy. Then there exist ε0 > 0 and two
subsequences (xnk)k and (xmk)k of (xn)n such that nk > mk, d(xnk , xmk) ≥ ε0 for
any k ≥ 1. We have

d(a, xmk) ≤ (1 + 1/mk)r, d(a, xnk) ≤ (1 + 1/nk)r < (1 + 1/mk)r,

and

d(xmk , xnk) ≥ ε0 ≥
(

1 +
1

mk

)
r
ε0

2r

for any k ≥ 1. Since X is UC, there is η(r, ε0
2r

) < δ(a, (1 + 1/mk)r,
ε0
2r

) such that

d
(
a,

1

2
xnk ⊕

1

2
xmk

)
<
(

1 +
1

mk

)
r
(

1− η(r,
ε0

2r
)
)
.

for every k ≥ 1. We note that 1
2
xnk ⊕ 1

2
xmk ∈ C since C is convex. Thus for any

k ≥ 1,

r <
(

1 +
1

mk

)
r(1− η(r,

ε0

2r
)).

Letting k →∞, we obtain a contradiction since r ≤ r(1−η(r, ε0
2r

)) with r > 0 and
η(r, ε0

2r
) ∈ (0, 1). Hence (xn)n is a Cauchy sequence. Thus there exists c ∈ X such

that lim
n→∞

d(c, xn) = 0. It implies that c ∈ C since C is closed. For each n ≥ 1, we

have

r = d(a, C) ≤ d(a, c) ≤ d(a, xn) + d(c, xn) ≤ (1 +
1

n
)r + d(c, xn).

Letting n→∞, we conclude that d(a, C) = d(a, c).
Next we are going to prove the uniqueness of c. Assume that there exists

c′ ∈ C such that c′ 6= c and d(a, c′) = r. Put r1 = d(c, c′) and ε = r1
r

. Since X is
UC, we have

d
(
a,

1

2
c⊕ 1

2
c′
)
≤ r(1− δ(a, r, ε)).

Since 1
2
x0⊕ 1

2
x1 ∈ C, we have r ≤ r(1−δ(a, r, ε)). This is a contradiction with r > 0

and δ(a, r, ε) > 0. Therefore, c is the unique point such that d(a, c) = d(a, C).

Similarly, the point (i) of the following lemma has been proved in [70] in the
case of hyperbolic spaces, and the point (ii) is a counterpart of Proposition 3.5 in
[1] for modular spaces.
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Lemma 4.1.6. Let (X, d) be a complete uniquely geodesic metric space. Assume
that X is UC. Then the following properties hold:

(i) Any nonincreasing sequence (Cn)n≥1 of nonempty bounded closed convex sub-
sets of X has a nonempty intersection.

(ii) Any family of nonempty closed bounded convex subsets of X satisfying the
finite intersection property has nonempty intersection.

Proof. (i) Suppose that (Cn)n≥1 is a nonincreasing sequence of nonempty bounded
closed convex subsets of X. If Cn = X for all n ≥ 1, then we are done. So we
assume that Cn0 6= X for some n0 > 1 and take x ∈ X \ Cn0 . It is not difficult
to see that the sequence (d(x,Cn))n is nondecreasing and bounded. Hence there
exists the limit r = lim

n→∞
d(x,Cn). Clearly, r ∈ (0,∞). It follows from Theorem

4.1.5 that for each n ≥ 1, there exists xn ∈ Cn such that d(x,Cn) = d(x, xn).
Since (Cn)n is non-increasing, we have that xk ∈ Cn for any k ≥ n. Using a
similar argument as in the proof of Theorem 4.1.5, there exists x0 ∈ X such that
lim
n→∞

d(xn, x0) = 0. Since Cn is closed, x0 ∈ Cn for all n ≥ 1, i.e., x0 ∈
⋂
n≥1

Cn.

(ii) Suppose that (Yi)i∈I is a family of nonempty bounded closed convex subsets
of X such that

⋂
i∈F Yi 6= ∅ for any finite subset F of I. We fix i0 ∈ I, and put

Ci := Yi ∩ Yi0 for each i ∈ I. We only need to prove that
⋂
i∈I Ci 6= ∅. Obviously,

(Ci)i∈I is a family of nonempty bounded closed convex subsets of Yi0 satisfying
the finite intersection property.

Put
J = {J ⊆ I : J is countable}.

First we are going to prove that if J ∈ J , then
⋂
j∈J

Cj 6= ∅. Indeed, assume that

J = {j1, j2, ...}. For each n ≥ 1, put J(n) = {j1, ..., jn}. Let An =
⋂

j∈J(n)

Cj for any

n ≥ 1. It is not difficult to see that (An)n is a decreasing sequence of nonempty
bounded closed convex subsets of X. Using (i), we have CJ =

⋂
j∈J

Cj 6= ∅.

Take x ∈ X. For each J ∈ J , we put dJ := d(x,CJ) and

dJ = sup{dJ : J ∈ J }.

Clearly, dJ ∈ [0,∞). For any n ≥ 1, there exists a subset Jn ∈ J such that

dJ −
1

n
≤ dJn ≤ dJ .

For each n ≥ 1, put J∗n =
n⋃
i=1

Ji. Clearly, J∗n is countable. Thus
( ⋂
j∈J∗n

Cj

)
n

is a

decreasing sequence of nonempty bounded closed convex subsets of Ci0 . It follows
from (i) that K =

⋂
j∈F

Cj 6= ∅, where F =
⋃
n≥1

J∗n =
⋃
n≥1

Jn. We note that
⋃
n≥1

Jn is

a countable subset of I, i.e,
⋃
n≥1

Jn ∈ J . Hence

dJ −
1

n
≤ dJn ≤ d(x,K) ≤ dJ
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for any n ≥ 1. It implies d(x,K) = dJ . Now Theorem 4.1.5 yields the existence
of a unique y ∈ K such that d(x, y) = d(x,K) = dJ .

Take i ∈ I. Since F ∪ {i} is countable, K ∩ Ci 6= ∅ and

d(x,K) ≤ d(x,K ∩ Ci) ≤ dJ .

Hence d(x,K) = d(x,K ∩ Ci) = dJ , which implies y ∈ K ∩ Ci. Thus y ∈ Ci for
every i ∈ I, that is, y ∈

⋂
i∈I
Ci.

Remark 4.1.7. We can prove in Lemma 4.1.6 that (i) is equivalent to (ii). Indeed,
we only have to prove that (ii) implies (i). Suppose that (ii) holds and take a
decreasing sequence (Cn)n of nonempty bounded closed bounded convex subsets
of X. Then for any finite subset {n1, ..., nl} ⊂ N, where n1 ≤ ... ≤ nl, we have
l⋂

k=1

Cnk = Cnl 6= ∅. Hence (Cn)n has the finite intersection property and thus⋂
n∈N

Cn 6= ∅.

Lemma 4.1.6 allows us to use normal structures in UC metric spaces. Let us
recall definitions of normal structure and uniform normal structure (see [78]).

Definition 4.1.8. A convex structure in a metric space X is a family F of subsets
of X such that ∅, X, {x} ∈ F for every x ∈ X, and F is closed under arbitrary
intersections. The structure F is said to be compact if every subfamily of F which
has the finite intersection property has nonempty intersection.

Given a convexity structure F in a metric space (X, d), we adopt the following
notation: for D ∈ F and x ∈ X, set

rx(D) = sup{d(x, y) : y ∈ D},
rX(D) = inf{rx(D) : x ∈ X},
r(D) = inf{rx(D) : x ∈ D}.

Definition 4.1.9. We say that X has normal structure (resp. uniform normal
structure) if there exists a convexity structure F on X such that r(A) < diam(A)
(resp. r(A) ≤ c diam(A) for a fixed constant c ∈ (0, 1)) for any nonempty A ∈ F
which is bounded and not reduced to a single point. We will also say that F is
normal (resp. uniformly normal).

A subset A of a metric space X is said to be admissible if A is the intersection
of closed balls centered at points of X. Of particular interest in metric fixed point
theory is the convexity structure A(X) consisting of ∅, X and all admissible sets
in X. Given any bounded set A ⊆ X, set

cov(A) :=
⋂
{D : D ∈ A(X) and D ⊇ A}.

Clearly, cov(A) ∈ A(X) and thus A = cov(A)⇔ A ∈ A(X).

Lemma 4.1.10 ([101]). Let X be a complete UC metric space. Then X has
normal structure.
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Proof. Let F be the family consisting of ∅, X and all nonempty closed convex
bounded subsets of X. Since X is UC, F is a compact convexity structure. We
are going to prove that r(A) < diam(A) for any A ∈ F which is not reduced to
a single point. Assume that A ∈ F and A has at least two distinct elements.
Denote d = diam(A), r = r(A). By definition of the diameter of A, we can choose
x, y ∈ A such that d(x, y) ≥ d/2. Let w = 1

2
x ⊕ 1

2
y. For every z ∈ A, we have

d(z, x) ≤ d, d(z, y) ≤ d and d(x, y) ≥ d/2. Since X is UC, it follows that

d(z, w) ≤ d− dδ(z, d, 1/2) ≤ d− dη(d/2, 1/2),

and so
rw(A) ≤ d− dη(d/2, 1/2).

Thus
r ≤ d− dη(d/2, 1/2),

and since η(d/2, 1/2) > 0, we have r < d, i.e., r(A) < diam(A). Therefore, X has
normal structure.

4.2. Fixed points of monotone G-nonexpansive mappings

In this section, we present some fixed point theorems for monotone G-nonex-
pansive mappings. The setting are reflexive metric spaces, in particular, uniformly
convex metric spaces. It is well-known that a Banach space is said to be reflexive
if every nonincreasing family of nonempty bounded closed convex subsets has non-
empty intersection. Thus it makes sense to define reflexivity for metric spaces as
follows:

Definition 4.2.1 ([63]). Let I be a directed set. A complete geodesic metric
space X is said to be reflexive if for every nonincreasing family (Ci)i∈I of nonempty,
bounded, closed, convex subsets, i.e., Ci ⊂ Cj whenever j ≤ i, then⋂

i∈I

Ci 6= ∅.

Lemma 4.2.2 ([63]). A space X is reflexive if and only if any family of nonempty,
closed, bounded, convex subsets of X satisfying the finite intersection property has
nonempty intersection.

Our first result is an application of Theorem 3.2.5 to the case of a reflexive
metric space with a partial order �:= E(G).

Theorem 4.2.3 ([101]). Let (X, d,�) be a reflexive metric space with a partial
order �, and C be a nonempty bounded closed convex subset of X. Assume that
order intervals are closed and convex. Let T : C → C be a monotone mapping. If
there exists c ∈ C such that c � T (c), then T has a fixed point.

Proof. Let G be the collection of all subsets of the form C ∩ P , where P is an
order interval in X. By Lemma 4.2.2, G satisfies that any subcollection G ′ of G
having the finite intersection property, has nonempty intersection. It follows from
Theorem 3.2.5 that there exists s ∈ C such that T ([s, s]G) ⊆ [s, s]G. Since � is a
partial order, [s, s]G is a singleton and hence T has a fixed point in C.
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Since nearly uniformly convex metric spaces (in the sense of Kell, see [63,
Definition 2.2]) are reflexive, we have the following corollary.

Corollary 4.2.4. Let (X, d,�) be a nearly uniformly convex metric space with a
partial order �, and let C be a bounded closed convex subset of X. Assume that
order intervals are closed and convex. Let T : C → C be a monotone mapping. If
there exists c ∈ C such that c � T (c), then T has a fixed point.

In 2016, Dehaish and Khamsi [38] showed that if C is a bounded closed and
convex subset of a partially ordered uniformly convex hyperbolic metric space,
then every monotone nonexpansive mapping T : C → C has a fixed point. By
Lemma 4.1.6, we show an analogue of Corollary 4.2.4 for UC metric spaces, thus
giving a wide generalization of Dehaish-Khamsi’s theorem by dropping both as-
sumptions about hyperbolicity of the space and nonexpansivity of the mapping.

Theorem 4.2.5 ([101]). Let X be a complete uniquely geodesic metric space
with a partial order �. Assume that X is UC, and order intervals are convex and
closed. Let C be a nonempty bounded closed convex subset of X and let T : C → C
be a monotone mapping. If there exists c ∈ C such that c � T (c), then T has a
fixed point in C.

Proof. It is enough to notice that from Lemma 4.1.6 (ii) X is reflexive and then
apply Theorem 4.2.3.

The next results extend Theorem 4.2.3 for monotone G-monotone mappings
in reflexive metric spaces with digraphs.

Definition 4.2.6. Let (X, d) be a metric space endowed with a digraph G such
that V (G) ⊆ X. A map T : X → X is said to be monotone G-monotone mapping
if T is G-monotone and satisfies

d(T (x), T (y)) ≤ d(x, y),

for any x, y ∈ X such that y ∈ [x,→)G.

Theorem 4.2.7 ([101]). Let X be a reflexive metric space with a digraph G and
let C be a bounded closed convex subset of X. Assume that G-intervals along
walks are closed and convex, and for each a ∈ C, [a, a]G is either empty or has
the fixed point property for nonexpansive mappings. If T : C → C is monotone
G-nonexpansive and there exists c ∈ C such that T (c) ∈ [c,→)G, then T has a
fixed point in C.

Proof. It follows from Theorem 3.2.5 that there exists s ∈ C such that [s, s]G 6= ∅,
T ([s, s]G) ⊆ [s, s]G and T is nonexpansive on [s, s]G since x ∈ [y,→)G and y ∈
[x,→)G for any x, y ∈ [s, s]G. By assumption, T has a fixed point in [s, s]G.

Corollary 4.2.8 ([101]). Let X be a complete UC metric space with a digraph G.
Assume that G-intervals along walks are convex and closed. Let C be a nonempty
bounded closed and convex subset of X. If T : C → C is monotone G-nonexpansive
and there exists c ∈ C such that T (c) ∈ [c,→)G, then T has a fixed point in C.
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Proof. It follows from Lemma 4.1.6 (ii) that X is reflexive. Without loss of gener-
ality we can assume that V (G) = C. It is sufficient to prove that each nonempty
[a, a]G, a ∈ C, has the fixed point property for nonexpansive mappings. Fix such
[a, a]G, and let F be the family consisting of ∅ and all bounded closed convex
subsets of [a, a]G. By virtue of Lemma 4.1.6 (ii), F is a convexity structure on
[a, a]G, and F is also compact. We invoke Lemma 4.1.10 to deduce that [a, a]G
has normal structure. Applying Theorem 3.2 in [78] (see also [64, Theorem 8])
we conclude that T has a fixed point in [a, a]G. Now the conclusion follows from
Theorem 4.2.7.

Remark 4.2.9. Notice that the set Fix(T )[a,a]G of fixed points of T in [a, a]G is
closed and convex if X is a complete UC metric space. Indeed, to show that
Fix(T )[a,a]G is closed, select a sequence (xn)n in Fix(T )[a,a]G which converges to
x ∈ [a, a]G. Then

d(xn, T (x)) = d(Txn, T (x)) ≤ d(xn, x) for all n,

and hence (xn)n≥1 also converges to T (x). By the uniqueness of the limit, x =
T (x). Thus x ∈ Fix(T )[a,a]G and therefore, Fix(T )[a,a]G is closed.

To show convexity, let x, y ∈ Fix(T )[a,a]G with x 6= y and set 2r = d(x, y) > 0.
We prove that z = 1

2
x⊕ 1

2
y ∈ Fix(T )[a,a]G . Assume conversely that z 6= T (z) and

let d(z, T (z)) = r0. We have d(x, z) = 1
2
d(x, y) = r and

d(x, T (z)) = d(T (x), T (z)) ≤ d(x, z), d(z, T (z)) = r
r0

r
.

Hence

d(x,
1

2
z ⊕ 1

2
T (z)) ≤ r

(
1− δ(r, r0

r
)
)
,

and similarly,

d(y,
1

2
z ⊕ 1

2
T (z)) ≤ r

(
1− δ(r, r0

r
)
)
.

By the triangle inequality,

2r = d(x, y) ≤ 2r − r
(
δ(r,

r0

r
) + δ(r,

r0

r
)
)
< 2r,

and we obtain a contradiction. Therefore, z = T (z). This shows that Fix(T )[a,a]G

is convex.

We are thus led to the following theorem.

Theorem 4.2.10 ([101]). Let X be a complete UC metric space with a digraph
G. Assume that G-intervals along walks are convex and closed. Let C be a
bounded closed and convex subset of X. Let T1, T2 : C → C be two monotone
G-nonexpansive mappings which are commutative. If there exists c ∈ C such that
Ti(c) ∈ [c,→)G for i = 1, 2, then Fix(T1) ∩ Fix(T2) is nonempty.

Proof. Without loss of generality we can assume that V (G) = C. Arguing
in a similar way to the proof of Theorem 3.2.5 there exists s ∈ C such that
Ti([s, s]G) ⊆ [s, s]G, and Ti are nonexpansive on [s, s]G for i = 1, 2. By Corollary
4.2.8 and Remark 4.2.9, Fix(T1)[s,s]G and Fix(T2)[s,s]G are nonempty, closed and
convex. Since T1, T2 are commutative, we have T2(Fix(T1)[s,s]G) ⊆ Fix(T1)[s,s]G .
Hence T2 : Fix(T1)[s,s]G → Fix(T1)[s,s]G has a fixed point in Fix(T1)[s,s]G by Corol-
lary 4.2.8. It follows that Fix(T1)[s,s]G ∩Fix(T2)[s,s]G is nonempty, bounded, closed
and convex. Hence Fix(T1) ∩ Fix(T2) is nonempty.
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Remark 4.2.11. Note that the conclusion of Theorem 4.2.10 holds for a finite
family of monotone G-nonexpansive mappings which are commutative.

By Remark 4.2.11 and using Lemma 4.1.6 (ii), we can extend Theorem 4.2.10
for any commutative family of monotone G-nonexpansive mappings.

Theorem 4.2.12 ([101]). Let X be a complete UC metric space with a digraph G.
Assume that G-intervals along walks are convex and closed. Let C be a nonempty
bounded closed convex of X. Let T be a commutative family of monotone G-
nonexpansive mappings from C into C. If there exists c ∈ C such that T (c) ∈
[c,→)G for every T ∈ T , then

⋂
T∈T

Fix(T ) is nonempty.

Proof. By Theorem 3.5.1, there exists s ∈ C such that T ([s, s]G) ⊆ [s, s]G for any
T ∈ T . By Corollary 4.2.8 and Remark 4.2.9, Fix(T )[s,s]G are nonempty, closed
and convex. Because of the above argument the family (Fix(T )[s,s]G)T∈T satisfies
the finite intersection property. It implies that

⋂
T∈T

Fix(T )[s,s]G 6= ∅.

4.3. Fixed points of monotone G-nonexpansive multivalued
mappings

Let (X, d) be a metric space. A multivalued mapping T : X → 2X is said to
be nonexpansive if for each x, y ∈ X, dH(T (x), T (y)) ≤ d(x, y), where dH is the
Hausdorff metric.

In 1968, Markin [89] proved that in a Hilbert space, any nonexpansive multi-
valued mapping T : C → CP(C) possesses a fixed point under the condition that
C is a nonempty weakly compact convex subset, CP(C) is the family of compact
subsets of C. Later, Browder [29] proved a similar result for spaces with weakly
continuous duality mapping, and Lami Dozo [46] proved it for spaces satisfying
Opial’s condition. Then Assad and Kirk [16] generalized Lami Dozo’s result. In
1974, Lim [85] showed a fixed point theorem by considering a bounded closed and
convex subset of a uniformly convex Banach space. It is natural to give a coun-
terpart of Lim’s theorem for monotone G-nonexpansive multivalued mappings in
UC hyperbolic metric spaces.

Definition 4.3.1 ([9]). Let (X, d) be a metric space with a digraph G, C be a
nonempty subset of X, and 2C be a family of nonempty subsets of C. A multi-
valued mapping T : C → 2C is said to be monotone G-nonexpansive if for any
x, y ∈ C with (x, y) ∈ E(G) and any u ∈ T (x), there exists v ∈ T (y) such that

(u, v) ∈ E(G), and d(u, v) ≤ d(x, y).

Assume that (xn)n is a bounded sequence in a hyperbolic metric space (X, d),
C is a nonempty subset of X. The type function τ : C → [0,∞) is defined as
follows:

τ(x) = lim sup
n→∞

d(xn, x) (4.3.1)

for all x ∈ C.
The following properties of type function are necessary for our results.
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Lemma 4.3.2 ([37]). Let (X, d) be a uniformly convex hyperbolic metric space,
(xn)n ⊂ X a bounded sequence, and C a closed convex subset of X. Assume that
τ is the type function defined by (xn)n as in (4.3.1). Then

(i) The function τ is continuous and convex;

(ii) There exists a unique minimum point c ∈ C such that

τ(c) = inf
x∈C

τ(x).

Define
r(C, (xn)) = inf

{
lim sup
n→∞

d(xn, x) : x ∈ C
}
.

In what follows, we show an analogue of Lemma 15.2 [54] for hyperbolic metric
spaces.

Lemma 4.3.3. Let X be a metric space, C a nonempty subset of X and (xn)n a
bounded sequence in X. Then there exists a subsequence (xnk)k of (xn)n such that
for every subsequence (xnkl )l of (xnk)k,

r(C, (xnk)) = r(C, (xnkl )).

Proof. If (yn)n is a subsequence of (xn)n, we will use the notation (yn) ≺ (xn).
Define

r0 := inf
{
r(C, (yn)) : (yn) ≺ (xn)

}
.

Then we can choose (y1
n) ≺ (xn) such that

r(C, (y1
n)) < r0 + 1.

Define
r1 := inf

{
r(C, (zn)) : (zn) ≺ (y1

n)
}
,

and select (y2
n) ≺ (y1

n) such that

r(C, (y2
n)) < r1 +

1

2
.

Continuing this process, we can construct sequences (yin) with

ri := inf
{
r(C, (zn)) : (zn) ≺ (yin)

}
such that (yin) ≺ (yi−1

n ) and

r(C, (yi+1
n )) < ri +

1

i+ 1

for any i ≥ 1. Since (ri)i is nondecreasing and bounded from above by r(C, (xn)),
it has a limit, say r. Hence lim

i→∞
r(C, (yi+1

n )) = r.

Now take the diagonal sequence (ynn) and denote r = r(C, (ynn)). Then (ynn) ≺
(yin), and hence r ≥ ri. On the other hand, we have (ynn) ≺ (yi+1

n ), which gives
r ≤ ri + 1

i+1
. Thus r = r.
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Since any subsequence (un) of (ynn) also satisfies (for the same reasons) the
inequalities

r(C, (un) ≥ ri and r(C, (un)) ≤ ri +
1

i+ 1

for any i ≥ 1, one gets r(C, (un)) = r. We conclude that (ynn)n is the desired
subsequence.

We also need the following important proposition. It is a consequence of the
result of Goebel and Kirk [53, Proposition 1].

Proposition 4.3.4. Let (X, d) be a hyperbolic metric space. Let (xn)n and (yn)n
be two sequences in (X, d) such that

xn+1 =
1

2
xn ⊕

1

2
yn

for any n ≥ 1. Suppose that

d(yn, yn+1) ≤ d(xn, xn+1), n ≥ 1.

Then we have

(1 +
n

2
)d(xi, yi) ≤ d(xi, yi+n) + 2n

(
d(xi, yi)− d(xi+n, yi+n)

)
(4.3.2)

for every i, n ≥ 1. In particular, if (xn)n and (yn)n are bounded then lim
n→∞

d(xn, yn) =

0.

Theorem 4.3.5. Let (X, d) be a complete hyperbolic metric space with a transitive
digraph G. Assume that X is UC and G-intervals are closed and convex. Let C
be a nonempty bounded closed convex subset of X. Let T : C → CP(C) be a
monotone G-nonexpansive multivalued mapping. If there exists x0 ∈ C such that
(x0, y0) ∈ E(G) for some y0 ∈ T (x0), then Fix(T ) 6= ∅.

Proof. Put

x1 =
1

2
x0 ⊕

1

2
y0.

Since G-intervals are convex and (x0, y0) ∈ E(G), we have (x0, x1), (x1, y0) ∈ E(G).
Since T is a monotone G-nonexpansive multivalued mapping, there is y1 ∈ T (x1)
such that

(y0, y1) ∈ E(G) and d(y1, y0) ≤ d(x1, x0).

Continuing in this manner, we can construct sequences (xn)n and (yn)n in C,
defined as follows:

xn+1 =
1

2
xn ⊕

1

2
yn, yn ∈ T (xn) for all n ≥ 0. (4.3.3)

By induction, we have

(xn, xn+1), (xn+1, yn), (yn, yn+1) ∈ E(G)

and

d(yn, yn+1) ≤ d(xn, xn+1) =
1

2
d(xn, yn)
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for any n ≥ 0. We have

d(xn+1, yn+1) ≤ d(xn+1, yn) + d(yn, yn+1)

≤ 1

2
d(xn, yn) + d(xn, xn+1) =

1

2
d(xn, yn) +

1

2
d(xn, yn) = d(xn, yn).

Hence d(xn+1, yn+1) ≤ d(xn, yn) for every n ≥ 0. By Proposition 4.3.4 we have
that lim

n→∞
d(xn, yn) = 0.

Since G is transitive and (xn)n is nondecreasing, ([xn,→)G, n ≥ 0)n is a nonin-
creasing sequence of nonempty closed convex subsets of X. It follows from Lemma
4.1.6 that

C∞ =
⋂
n≥0

[xn,→)G ∩ C 6= ∅.

Now Lemma 4.3.3 implies the existence of a subsequence (xnk)k of (xn)n such that
for each subsequence (xnkl )l of (xnk)k we have

r(C∞, (xnkl )) = r(C∞, (xnk)).

From Lemma 4.3.2 there exists a unique c ∈ C∞ such that

lim sup
k→∞

d(xnk , c) = inf{lim sup
k→∞

d(xnk , x) : x ∈ C∞} = r(C∞, (xnk)).

Thus we have (xnk , c) ∈ E(G) for any k ≥ 1. Since T is a monotone G-
nonexpansive multivalued mapping, there exists cnk ∈ T (c) such that

(ynk , cnk) ∈ E(G) and d(ynk , cnk) ≤ d(xnk , c)

for any k ≥ 1. Since T (c) is compact, there exists a subsequence (cnkl )l of (cnk)k
such that lim

l→∞
cnkl = c′ ∈ T (c). First we prove that c′ ∈ C∞. Indeed, it is not

difficult to see that

∅ 6=
⋂
k≥0

[ynk ,→)G ⊆
⋂
k≥0

[xnk ,→)G =
⋂
n≥0

[xn,→)G = C∞.

For each m ≥ 0 and nkl ≥ m, we have

(ym, ym+1), (ynkl , cnkl ) ∈ E(G).

It implies that cnkl ∈ [ym,→)G for any nkl ≥ m. Hence c′ ∈ [ym,→)G for every
m ≥ 0. Thus c′ ∈

⋂
m≥0

[ym,→)G and therefore,

c′ ∈
⋂
m≥0

[xm,→)G.

Now, we are going to prove that c = c′. We have

d(xnkl ,
1

2
c⊕ 1

2
c′) ≤ 1

2
d(xnkl , c) +

1

2
d(xnkl , c

′)

≤ 1

2
d(xnkl , c) +

1

2

(
d(xnkl , ynkl ) + d(ynkl , cnkl ) + d(cnkl , c

′)
)
.
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Taking upper limit as l→∞, we get

lim sup
l→∞

d(xnkl ,
1

2
c⊕ 1

2
c′) ≤ 1

2
lim sup
l→∞

d(xnkl , c) +
1

2
lim sup
l→∞

d(ynkl , cnkl )

≤ 1

2
lim sup
l→∞

d(xnkl , c) +
1

2
lim sup
l→∞

d(xnkl , c)

= lim sup
l→∞

d(xnkl , c) ≤ lim sup
k→∞

d(xnk , c) = r(C∞, (xnk))

since d(ynkl , cnkl ) ≤ d(xnkl , c) for any positive integer l. From convexity of C∞ we
have

lim sup
l→∞

d(xnkl ,
1

2
c⊕ 1

2
c′) ≥ r(C∞, (xnkl )).

Thus

r(C∞, (xnk)) = r(C∞, (xnkl )) ≤ lim sup
l→∞

d(xnkl ,
1

2
c⊕ 1

2
c′) ≤ r(C∞, (xnk)).

Hence

r(C∞, (xnkl )) = lim sup
l→∞

d(xnkl ,
1

2
c⊕ 1

2
c′) = r(C∞, (xnk)).

On the other hand, we have

r(C∞, (xnkl )) ≤ lim sup
l→∞

d(xnkl , c) ≤ lim sup
k→∞

d(xnk , c) = r(C∞, (xnk)).

Thus
r(C∞, (xnkl )) = lim sup

l→∞
d(xnkl , c).

By uniqueness, we have c = 1
2
c ⊕ 1

2
c′, i.e., c = c′. Therefore, c is a fixed point of

T .

Example 4.3.6. Consider the closed interval [0, 1] ⊂ R with the absolute value
| · |. Let G = (V (G), E(G)) such that

V (G) = [0,
1

2
] and E(G) = {(x, y) : x, y ∈ [0,

1

2
]}.

Then G is reflexive, transitive, and G-intervals are closed, convex. Define a mul-
tivalued mapping T : [0, 1]→ CP([0, 1]) by

T (x) =

{
{x/2, x/3} if x 6= 1

{0} if x = 1.

We have
dH(T (1), T (3/4)) = 3/8 >| 1− 3/4 | .

Thus T is not nonexpansive. However, it is not difficult to see that T is monotone
G-nonexpansive and Fix(T ) = {0}.

By putting E(G) :=�, we obtain the following result.
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Corollary 4.3.7. Let (X, d,�) be a complete hyperbolic metric space with a partial
order �. Assume that (X, d) is UC, and all order intervals are closed and convex.
Let C be a nonempty bounded closed convex subset of X. Let T : C → CP(C) be
a monotone nonexpansive multivalued mapping. Assume that there exists x0 ∈ C
such that x0 � y0 for some y0 ∈ T (x0). Then there exists c ∈ X such that c ∈ T (c).

In the case of single-valued mappings, as a consequence of Theorem 4.3.5, we
obtain Theorem 3.3 in [15] of Alfuraidan and Shukri.

Corollary 4.3.8. Let (X, d) be a complete hyperbolic metric space with a reflexive,
transitive digraph G. Assume that X is UC and G-intervals are closed and convex.
Let C be a nonempty bounded closed convex subset of X. Let T : C → C be a
monotone G-nonexpansive mapping. Then T has a fixed point provided that there
exists x0 ∈ C such that (x0, T (x0)) ∈ E(G).

Obviously, if X is p-UC hyperbolic metric space in the sense of Quan, then X
is UC. Therefore, Theorem 4.3.5 is an extension of Quan’s theorem.

Lemma 4.3.9 ([99]). Let (X, d) be a complete hyperbolic metric space with a
reflexive, transitive digraph G. Assume that X is p-UC and G-intervals are closed
and convex. Let C be a nonempty, closed, convex and bounded subset of X. Let
T : C → CP(C) be a monotone G-nonexpansive multivalued mapping. Then
Fix(T ) 6= ∅ provided there exists x0 ∈ C such that (x0, y0) ∈ E(G) for some
y0 ∈ T (x0).
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Chapter 5

Fixed points of G-monotone mappings
in modular spaces

We know that modular functions do not adhere to metric properties. How-
ever, modular spaces are constructed based on linear vector spaces. Consequently,
when equipped with a convex structure, modular spaces inherit certain proper-
ties with uniformly convex Banach spaces. The aim of this chapter is to study
the existence of fixed points of monotone Gρ-nonexpansive mappings and mono-
tone Gρ-nonexpansive multivalued mappings. The setting are modular spaces
that share some properties with reflexive Banach spaces, in particular, uniformly
convex modular spaces.

We first need some definitions and properties concerning modular spaces,
asymptotic centers and uniform convexities. For more details, the reader is re-
ferred to [1, 24, 37, 59, 65, 67, 92].

5.1. Preliminaries

5.1.1 Modular spaces

Definition 5.1.1. Let X be a vector space over K (K = R or K = C). A
functional ρ : X → [0,∞] is called a modular if

(i) ρ(x) = 0 if and only if x = 0;

(ii) ρ(αx) = ρ(x) for any α ∈ K with |α| = 1, x ∈ X;

(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for any α, β ≥ 0 with α + β = 1, and x, y ∈ X.

We say that the modular ρ is convex if it satisfies the condition

ρ(αx+ βy) ≤ αρ(x) + βρ(y)

for any α, β ≥ 0 with α + β = 1, and x, y ∈ X.

Definition 5.1.2. A modular ρ defines a corresponding modular space, that is,
the vector space Xρ given by

Xρ = {x ∈ X : lim
λ→0

ρ(λx) = 0}.

The Luxemburg norm ‖ · ‖ρ : Xρ → [0,∞) is defined by

‖x‖ρ = inf
{
α > 0 : ρ

(x
α

)
≤ 1
}
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for every x ∈ Xρ.

In this chapter, when referring to convergence with respect to the norm, we
are specifically discussing convergence in the Luxemburg norm.

Example 5.1.3. 1) Let RN := {(xn)n : xn ∈ R,∀n ≥ 1}, and consider a func-
tion defined by

ρ((xn)n) =
∞∑
n=1

|xn|n

for any (xn)n ∈ RN. Then ρ is a convex modular.

2) Let X be a vector space over R, ‖ · ‖ a normed on X. Since the function
f : [0,∞)→ [0,∞) defined by f(t) = tp with p ∈ N∗ is convex, ρ(x) = ‖x‖p
is a convex modular on X.

3) Let µ be the Lebesgue measure on R. A function ϕ : R+ → R+ is nonde-
creasing, continuous and satisfies

i) lim
t→∞

ϕ(t) =∞, and

ii) ϕ(t) = 0 if and only if t = 0.

The Orlicz modular is defined by

ρ(f) =

∫
R
ϕ(|f(t)|)dµ(t),

for every measurable real function f on R.

4) Let D be a domain in Rn. The vector space of all real valued, Borel mea-
surable functions defined on D is denoted by F(D). Take k ∈ F(D) such
that k(x) ∈ [1,∞] for every x ∈ D. Define Dk

∞ := {x ∈ D : k(x) =∞}, and
write

ρk(f) =

∫
D\Dk∞

|f(x)|k(x)dµ+ sup
x∈Dk∞

|f(x)|

for any f ∈ F(D). Then the function ρ is a convex and continuous modular
on F(D) (see [73]).

Definition 5.1.4. Let Xρ be a modular space.

(a) A sequence (xn)n in Xρ is said to be ρ-converging to x ∈ Xρ if lim
n→∞

ρ(xn −

x) = 0 (denoted by xn
ρ→ x).

(b) A sequence (xn)n in Xρ is said to be ρ-Cauchy if lim
n,m→∞

ρ(xn − xm) = 0.

(c) The modular spaceXρ is ρ-complete if any ρ-Cauchy sequence is ρ-convergent.

(d) A subset B ⊂ Xρ is said to be ρ-closed if for any sequence (xn)n ⊂ B with

xn
ρ→ x, then x ∈ B. We denotes B

ρ
the closure of B with respect to ρ.

(e) A subset B ⊂ Xρ is called ρ-bounded if diamρ(B) := sup{ρ(x−y) : x, y ∈ B}
is finite, diamρ(B) is called the ρ-diameter of B.
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(f) A set B ⊂ Xρ is called ρ-compact, if for any sequence (xn)n ⊂ Xρ there

exists a subsequence (xnk)k and x ∈ B such that xnk
ρ→ x.

(g) ρ is said to satisfy the Fatou property if ρ(x−y) ≤ lim inf
n→∞

ρ(x−yn) whenever

yn
ρ→ y, for any x, y, yn in Xρ.

Clearly, if ρ satisfies the Fatou property, then the ρ-balls

Bρ(x, r) := {y ∈ Xρ : ρ(x− y) ≤ r}

with x ∈ Xρ, r ≥ 0, are ρ-closed.

Definition 5.1.5. Let ρ be a modular defined on a vector space X. We say that
ρ satisfies the ∆2-type condition if there exists K > 0 such that

ρ(2x) ≤ Kρ(x)

for any x ∈ Xρ. The smallest such constant K will be denoted by ω(2).

By the ∆2-type condition, it is natural to define the growth function as follows:

Definition 5.1.6. Let ρ be a convex modular satisfying the ∆2-type condition.
We define a growth function ωρ by

ωρ(t) = sup
{ρ(tx)

ρ(x)
: 0 < ρ(x) <∞

}
∀t ∈ [0,∞).

It is not difficult to prove the following properties of the growth function.

Lemma 5.1.7. Let ρ be a convex modular satisfying the ∆2-type condition. Then
the growth function ωρ has the following properties:

(a) For every t ∈ [0,∞), ωρ(t) ∈ [0,∞);

(b) ωρ : [0,∞) → [0,∞) is a convex, strictly increasing function, and so it is
continuous;

(c) ωρ(ab) ≤ ωρ(a)ωρ(b) for all a, b ∈ [0,∞);

(d) ω−1
ρ (a)ω−1

ρ (b) ≤ ω−1
ρ (ab) for every a, b ∈ [0,∞), where ω−1

ρ is the function
inverse of ωρ;

(e) ‖x‖ρ ≤ 1
ω−1
ρ ( 1

ρ(x)
)

for every x ∈ Xρ \ {0}.

An analogue of the following lemma was proved by Benavides, Khamsi, and
Samadi [25] for modular function spaces. For the convenience of the reader, we
provide the proof using the same technique.

Lemma 5.1.8. Let ρ be a convex modular satisfying the ∆2-type condition. Let
(xn)n be a sequence in Xρ such that

ρ(xn+1 − xn) ≤ αεn, n ≥ 1,

where α is a positive constant, and ε ∈ (0, 1). Then (xn)n is Cauchy in (Xρ, ‖ · ‖ρ)
and ρ-Cauchy.
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Proof. We assume that there exists n0 ∈ N such that ρ(xn+1 − xn) > 0 for every
n ≥ n0. It implies that

1

αεn
≤ 1

ρ(xn+1 − xn)
, ∀n ≥ n0.

By Lemma 5.1.7, we get

ω−1
( 1

α

)(
ω−1

(1

ε

))n
≤ ω−1

( 1

ρ(xn+1 − xn)

)
, ∀n ≥ n0.

It deduces that

‖xn+1 − xn‖ρ ≤
1

ω−1
(

1
α

) 1(
ω−1

(
1
ε

))n , ∀n ≥ n0.

Since ω−1
(

1
ε

)
> 1, (xn)n is a Cauchy sequence in (Xρ, ‖ ·‖ρ). Note that under ∆2-

type condition, the modular-convergence and norm-convergence coincide. Hence
(xn)n is also ρ-Cauchy.

Lemma 5.1.9. Let ρ be a convex modular satisfying the ∆2-type condition. Let
(xn)n, (yn)n be two sequences in Xρ. If lim

n→∞
ρ(yn) = 0, then

lim sup
n→∞

ρ(xn + yn) = lim sup
n→∞

ρ(xn),

and
lim inf
n→∞

ρ(xn + yn) = lim inf
n→∞

ρ(xn).

Proposition 5.1.10. Let ρ be a modular defined on X. Then ρ-convergence
follows from norm convergence in Xρ. Norm convergence and ρ-convergence are
equivalent in Xρ if and only if the following condition holds: for every sequence
(xn)n ⊂ Xρ, if lim

n→∞
ρ(xn) = 0, then lim

n→∞
ρ(2xn) = 0.

Obviously, if ρ satisfies the ∆2-type condition then norm convergence and ρ-
convergence are equivalent in Xρ.

As in the Banach space setting (see [33, 50, 64, 65, 76]) the method of asymp-
totic centers plays an important role in proving fixed point theorems for nonex-
pansive maps. Some definitions and results concerning asymptotic centers demon-
strate adaptability to modular spaces in a straightforward manner.

Let ρ be a convex modular defined on X, C be a nonempty ρ-closed ρ-bounded
subset of Xρ, and (xn)n a bounded sequence in Xρ.

Definition 5.1.11. We define

rρ(C, (xn)n) = inf{lim sup
n→∞

ρ(xn − x) : x ∈ C},

Aρ(C, (xn)n) = {x ∈ C : lim sup
n→∞

ρ(xn − x) = rρ(C, (xn))}.

The number rρ(C, (xn)n) and the (possible empty) set Aρ(C, (xn)n) are called,
respectively, the ρ-asymptotic radius and the ρ-asymptotic center of (xn)n in C.
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Obviously, if C is convex then the set Aρ(C, (xn)n) is also convex. Furthermore,
the set Aρ(C, (xn)n) is nonempty and closed whenever the modular ρ satisfies the
∆2-type condition and the space Xρ satisfies property (Rρ) (see Lemma 5.1.19 ii)).

Definition 5.1.12. The sequence (xn)n is said to be regular relative to C if the
asymptotic radii of all subsequences of (xn)n (relative to C) are the same. If, in
addition, Aρ(C, (xnk)k) = Aρ(C, (xn)n) for every subsequence (xnk)k of (xn)n we
say that (xn)n is asymptotically uniform relative to C.

The following lemma can be proved similarly to the work of Goebel and Kirk
(Lemma 15.2, [54]) in a Banach space.

Lemma 5.1.13. Let Xρ be a complete modular space, C be a nonempty subset in
Xρ, and (xn)n be a bounded sequence in Xρ. Then (xn)n contains a subsequence
regular relative to C.

5.1.2 Uniform convexity in modular spaces

Given that X is a vector space, and ρ is a convex modular function, the Lux-
emburg norm ‖ · ‖ρ is induced on Xρ. In fixed point theory for nonexpansive
mappings in Banach spaces, the common approach is to assume the uniform con-
vexity of the norm. This assumption implies reflexivity, subsequently ensuring
the weak compactness of closed bounded and convex sets. Early investigations
addressed the inquiry of whether the normed vector space (Xρ, ‖ · ‖ρ) exhibits
uniform convexity. As we will explore later, the concept of uniform convexity of
modulars, along with the property (Rρ) representing a counterpart of reflexivity in
Banach spaces, provides us with powerful tools for showing fixed-point properties
in modular spaces. This issue was extensively explored in Orlicz function spaces
(see [92]). Nakano [93] initiated and studied the modular uniform convexity.

Definition 5.1.14 ([68]). Let ρ be a modular, r > 0, and ε > 0. For i = 1, 2, we
define

Di(r, ε) =
{

(x, y) ∈ (Xρ)
2 : ρ(x) ≤ r, ρ(y) ≤ r, ρ

(x− y
i

)
≥ rε

}
.

If Di(r, ε) 6= ∅, let

δi(r, ε) = inf
{

1− 1

r
ρ
(x+ y

2

)
: (x, y) ∈ Di(r, ε)

}
.

If Di(r, ε) = ∅, we set δi(r, ε) = 1.

(a) We say that ρ satisfies (UCi) if for each r > 0 and ε > 0, we have δi(r, ε) > 0.
Note that for each r > 0, Di(r, ε) 6= ∅ for ε > 0 small enough.

(b) We say that ρ satisfies (UUCi) if for each s ≥ 0 and ε > 0, there exists
ηi(s, ε) > 0 depending on s and ε such that

δi(r, ε) > ηi(s, ε) > 0

for r > s.

Dau Hong Quan 65



5.1. PRELIMINARIES

(c) We say that ρ is strictly convex (SC) if for every x, y ∈ Xρ such that ρ(x) =
ρ(y) and

ρ
(x+ y

2

)
=
ρ(x) + ρ(y)

2
,

we have x = y.

Remark 5.1.15. Observe that

(a) For i = 1,2, the functions δi(r, ·) are nondecreasing for every r > 0.

(b) For each x ∈ Xρ, we put

δ′(r, x) = inf
{

1− 1

r
ρ
(x

2
+ y
)

: y ∈ Xρ, ρ(y) ≤ r, ρ(x+ y) ≤ r
}
.

Then

δ1(r, ε) = inf{δ′(r, x) : x ∈ Xρ, ρ(x) ≥ rε},

δ2(r, ε) = inf{δ′(r, x) : x ∈ Xρ, ρ(
x

2
) ≥ rε}.

Note that if δ′(r, x) > 0 for any x ∈ Xρ \ {0} and r > 0, we say that Xρ is
ρ-uniformly convex in every direction (ρ-UCED) (see Definition 2.3, [69]).

(c) δ1(r, ε) ≤ δ2(r, ε) for r > 0 and ε > 0.

The following properties follows easily from Definition 5.1.14.

Proposition 5.1.16 ([68]). We have the following relations:

(a) (UUCi) implies (UCi) for i = 1,2;

(b) (UC1) implies (UC2) implies (SC);

(c) (UUC1) implies (UUC2).

By Remark 5.1.15, we have the following results.

Proposition 5.1.17 ([67]). If ρ satisfies the ∆2-type condition, then

(a) (UC1) and (UC2) are equivalent.

(b) (UUC1) and (UUC2) are equivalent.

Example 5.1.18. Consider Example 5.1.3 3).

1) If we choose ϕ(t) = e|t| − |t| − 1 or ϕ(t) = et
2 − 1, then the Orlicz modular

has UC1 property and does not satisfy the ∆2-type condition (see [69, 91]).

2) If the modular ρ satisfies the ∆2-type condition, then the Luxemburg norm
is (UC1) (see [61, 87, 91]).

Let us begin with some fundamental results for modular spaces with the (UCi)
or (UUCi) property.
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Lemma 5.1.19 ([1, 26, 68]). Let ρ be a convex modular defined on X which
satisfies the Fatou property. Assume that Xρ is complete, and ρ is (UUC2). The
following properties hold:

(a) Let C be a nonempty ρ-closed convex subset of Xρ. Let x ∈ Xρ be such that

dρ(x,C) = inf{ρ(x− y) : y ∈ C} <∞.

Then there exists a unique point c ∈ C such that dρ(x,C) = ρ(x− c);

(b) Xρ satisfies property (Rρ), i.e., for any nonincreasing sequence (Cn)n of ρ-
closed convex nonempty subsets of Xρ such that sup

n≥1
dρ(x,Cn) <∞ for some

x ∈ Xρ, then C∞ =
⋂
n≥1

Cn is nonempty.

Abdou and Khamsi ([1]) showed that property (Rρ) can be extended to any
family of nonempty ρ-bounded ρ-closed convex subsets which satisfies the finite
intersection property.

Proposition 5.1.20 ([1, 26, 68]). Let ρ be a convex modular defined on X.
Assume that ρ is (UUC2), and Xρ is complete. Let Y be a nonempty ρ-bounded
ρ-closed convex subset of Xρ. Let (Yi)i∈I be a family of nonempty ρ-closed convex
subsets of Y such that

⋂
i∈J

Yi 6= ∅ for any finite subset J of I. Then
⋂
i∈I
Yi 6= ∅.

Definition 5.1.21 ([1]). Let ρ be a convex modular on X, C a nonempty subset
of Xρ, and let (xn)n be a sequence in Xρ. The function τρ : C → [0,∞] defined by

τρ(x) = lim sup
n→∞

ρ(xn − x) (5.1.1)

is called a ρ-type function. A sequence (cn)n in C is called a minimizing sequence
of τρ if lim

n→∞
τρ(cn) = inf

x∈C
τρ(x).

Theorem 5.1.22. Let ρ be a convex modular satisfying the ∆2-type condition.
Let Y be a ρ-closed ρ-bounded convex subset of Xρ, and let (xn)n be a sequence in
Xρ. Assume that τρ : Y → [0,∞] is the ρ-type function generated by (xn)n such
that τ0 := inf{τρ(x) : x ∈ Y } <∞. Then

(a) τρ is convex, that is, the subset {x ∈ Y : τρ(x) ≤ r} is convex for every
r ≥ 0;

(b) τρ is weakly lower semicontinuous;

(c) Furthermore, if ρ satisfies the Fatou property and (UUC1) property, then
there exists a unique point y ∈ Y such that

τρ(y) = inf{τρ(x) : x ∈ Y }.

Proof. It is easy to prove (a). Claim (b) is showed in Lemma 3.4 of [26]. Claim
(c) is proved in Proposition 3.7 of [1].
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5.2. Fixed points of monotone Gρ-nonexpansive mappings in
modular spaces

Firstly, we investigate the case of ρ-nonexpansive mappings.

Definition 5.2.1 ([1]). Let ρ be a modular defined on a vector space X and
C ⊆ Xρ. A mapping T : C → C is called ρ-nonexpansive if for every x, y ∈ C,

ρ(T (x)− T (y)) ≤ ρ(x− y).

It is easy to see that a ρ-nonexpansive mapping T : C → C is ρ-continuous
in the meaning that T (xn)

ρ→ T (x) whenever xn
ρ→ x, xn, x ∈ C for any n ≥ 1.

Using the compactness and continuity, Abdou and Khamsi (Theorem 4.4, [1])
established the following theorem.

Theorem 5.2.2 ([1]). Let Xρ be a ρ-complete modular space with a convex mod-
ular ρ. Let C be a nonempty ρ-compact convex ρ-bounded subset of Xρ. Then any
ρ-nonexpansive mapping T : C → C has a fixed point.

The assumption of ρ-compactness is strong. A weaker assumption was consid-
ered in the case of uniform convexity. In 2017, Abdou and Khamsi [1] proved a
result similar to Browder-Göhde’s fixed point theorem (see [28]) for ρ-nonexpansive
mappings in modular spaces.

Theorem 5.2.3 ([1]). Let ρ be a convex modular that satisfies the Fatou property.
Let C be a nonempty ρ-closed convex ρ-bounded subset of Xρ. Let T : C → C be
a ρ-nonexpansive mapping. Assume that ρ is (UUC1). Then T has a fixed point
and Fix(T ) is ρ-closed, convex.

We are going to consider counterparts of Theorems 5.2.2 and 5.2.3 for monotone
Gρ-nonexpansive mappings.

Definition 5.2.4 ([1]). Let ρ be a modular defined on a vector space X and
C ⊆ Xρ. Let G = (V (G), E(G)) be a digraph on X such that V (G) ⊆ C. A
mapping T : C → C is called monotone Gρ-nonexpansive if T is G-monotone and
for every x, y ∈ C with y ∈ [x,→)G, we have

ρ(T (x)− T (y)) ≤ ρ(x− y).

Obviously, monotone Gρ-nonexpansive maps need not be ρ-continuous.

Example 5.2.5. Let φ be a nonnegative-valued, increasing, convex function de-
fined on R+, and there exists k ≥ 1 such that φ(2t) ≤ kφ(t) for any t ∈ R+. The
Orlicz-Birnbaum space Lφ is defined by

Lφ =
{
x : [0, 1]→ R : ρφ(x) =

∫
[0,1]

φ(|x(t)|)dt <∞
}
.

Take R > 0, and write BR := {x ∈ Lφ : ρφ(x) ≤ R}. Fix α ∈ (0, 1). We define a
digraph on Lφ as follows:

(x, y) ∈ E(G)⇔ x(t) ≤ y(t) for almost every t ∈ [0, α].

Let F : [0, 1]× [0, 1]× Lφ → R be a measurable function in both variables s and
t for every x ∈ Lφ. Assume that F satisfies the following conditions:
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i) |F (t, s, x)| ≤ h(t, s)+g(t)|x(s)| for a.e. t, s ∈ [0, 1], x ∈ Lφ, where 0 ≤ g(t) ≤
M0 < 2/K for t ∈ [0, 1] is integrable, and∫

[0,1]

∫
[0,1]

φ(h(t, s))dtds < +∞;

ii) F (t, s, ·) is nondecreasing for a.e. t, s ∈ [0, α], and

0 ≤ F (t, s, y)− F (t, s, x) ≤ y(s)− x(s)

for a.e. t, s ∈ [0, 1] and any x, y ∈ Lφ such that (x, y) ∈ E(G).

Consider the operator

(Tx)(t) = f(t) +

∫
[0,1]

F (t, s, x)ds

for every t ∈ [0, 1], where f ∈ Lφ. We can prove that T is a monotone Gρ-
nonexpansive mapping on BR for a sufficiently large R.

Using the finite intersection property and applying Theorem 5.2.2 we have the
following fixed point theorem for monotone Gρ-nonexpansive mappings.

Theorem 5.2.6 ([101]). Let ρ be a modular in X which satisfies ∆2-type condi-
tion, and let G be a digraph on Xρ. Assume that Xρ is ρ-complete, and G-intervals
along walks are convex and ρ-closed. Let C be a ρ-compact ρ-bounded convex sub-
set of Xρ and T : C → C a monotone Gρ-nonexpansive mapping. If there exists
c ∈ C such that T (c) ∈ [c,→)G, then there is x0 ∈ C such that T (x0) = x0.

Proof. Since ρ satisfies ∆2-property, ρ-convergence is equivalent to convergence in
the space (Xρ, ‖ · ‖ρ). It implies that every ρ-compact subset of Xρ is compact
in (Xρ, ‖ · ‖ρ). Now Theorem 3.2.5 implies that there exists s ∈ C such that
[s, s]G 6= ∅ and T : [s, s]G → [s, s]G is ρ-nonexpansive. It follows from Theorem
5.2.2 that T has a fixed point in [s, s]G.

In 1980, Bynum [33] introduced normal structure coefficients. Next, Kirk [77]
used normal structure in the study of fixed point problems for nonexpansive map-
pings in Banach spaces. The definitions can be extended to modular spaces. Let
C be a nonempty ρ-bounded subset of Xρ and x ∈ Xρ. Put

rρ(x,C) := sup{ρ(x− y) : y ∈ C},
rρ(C) := inf{rρ(x,C) : x ∈ co(C)}.

The number rρ(C) is called the ρ-Chebyshev radius of C.

Definition 5.2.7 ([65]). A modular space Xρ is said to have ρ-normal structure if
for any nonempty ρ-bounded ρ-closed convex subset C of Xρ with diamρ(C) > 0,
there exists x ∈ C such that rρ(x,C) < diamρ(C).

A modular space Xρ is said to have ρ-uniform normal structure if there exists
a constant α ∈ (0, 1) such that for any subset C as above, there exists x ∈ C such
that rρ(x,C) < α diamρ(C).
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The following result proved by Khamsi [65], is analogous to Kirk’s fixed point
theorem [77].

Theorem 5.2.8 ([65]). Let ρ be a convex modular defined on X and satisfies the
Fatou property. Assume that Xρ is ρ-complete modular space. Moreover, Xρ has
the ρ-normal structure and has the property (Rρ). Let C be a nonempty ρ-bounded
ρ-closed convex subset of Xρ. Then any ρ-nonexpansive mapping T : C → C has
a fixed point.

Following this direction, we firstly show a sufficient condition for Xρ to have
ρ-normal structure as follows:

Theorem 5.2.9 ([101]). Let ρ be a modular defined in X. If ρ is (UC2), then
Xρ has ρ-normal structure.

Proof. Assume that C ⊂ Xρ is ρ-closed, convex, ρ-bounded, and diamρ(C) > 0.
Put 1

2
C = { c

2
: c ∈ C}. Then 0 < diamρ(

1
2
C) ≤ diamρ(C). Write d1 = diamρ(C)

and d2 = diamρ(
1
2
C). Then there are x, y ∈ C such that ρ(x−y

2
) ≥ d2/2. For all

z ∈ C, we have ρ(x− z) ≤ d1 and ρ(y − z) ≤ d1. Hence

ρ(z − w) ≤ d1 − d1δ(d1,
d2

2d1

),

where w = x+y
2

. Thus

rρ(w,C) ≤ d1 − d1δ(d1,
d2

2d1

),

and since ρ is (UC2), we have δ(d1,
d2
2d1

) > 0. It follows that rρ(w,C) < d1.
Therefore, Xρ has ρ-normal structure.

From this theorem, we obtain a little improvement on the Abdou-Khamsi’s
result.

Theorem 5.2.10 ([101]). Let ρ be a convex modular satisfying the Fatou property
and (UUC2). Assume that Xρ is ρ-complete. Let C be a nonempty ρ-closed convex
ρ-bounded subset of Xρ, and let T : C → C be a ρ-nonexpansive mapping. Then
Fix(T ) is a nonempty ρ-closed and convex subset of C.

Proof. It follows from Proposition 5.1.16 (a) and Theorem 5.2.9 that Xρ has ρ-
normal structure. Furthermore, by Lemma 5.1.19 (b), Xρ has property (Rρ). Now
Theorem 5.2.8 yields Fix(T ) is nonempty. To prove that Fix(T ) is ρ-closed and
convex we can argue in the same way as in [1, Theorem 4.5].

By Theorem 5.2.10 we can show a ‘modular’ version of Browder and Göhde’s
fixed point theorem for monotone Gρ-nonexpansive mappings as follows:

Theorem 5.2.11 ([101]). Let ρ be a convex modular satisfying the Fatou property
and (UUC2). Assume that Xρ is ρ-complete. Let G be a digraph on Xρ such that
G-intervals along walks are convex and ρ-closed. Let C be a nonempty ρ-bounded ρ-
closed convex subset of Xρ and T : C → C a monotone Gρ-nonexpansive mapping.
If there exists c ∈ C such that T (c) ∈ [c,→)G, then Fix(T ) is nonempty.
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Taking a convex modular ρ satisfying the Fatou property and (UUC1), Xρ = Lρ
and G :=≤, we have Theorem 3.1 of Dehaish-Khamsi [37].

Lemma 5.2.12 ([37]). Let ρ be a convex modular satisfying the Fatou property
and (UUC1), C be a nonempty ρ-bounded ρ-closed convex subset of Lρ. Let T :
C → C be a ρ-continuous and monotone ρ-nonexpansive mapping. If there exists
f0 ∈ C such that f0 ≤ T (f0), then T has a fixed point.

In a similar way to Theorem 4.2.12, we can prove the existence of common
fixed points for a commutative family of monotone Gρ-nonexpansive mappings.

Theorem 5.2.13 ([101]). Let ρ be a convex modular satisfying the Fatou property
and (UUC2). Assume that Xρ is ρ-complete. Let G be a digraph on Xρ such
that G-intervals along walks are convex and ρ-closed. Let C be a nonempty ρ-
bounded ρ-closed convex subset of Xρ, and T a commutative family of monotone
Gρ-nonexpansive mappings from C into C. If there exists c ∈ C such that T (c) ∈
[c,→)G for every T ∈ T , then

⋂
T∈T

Fix(T ) is nonempty.

5.3. Fixed points of monotone G-nonexpansive multivalued
mappings in modular spaces

In this section, we formulate some fixed point theorems for monotone Gρ-
nonexpansive multivalued mapping in modular spaces equipped with a digraph.

Let ρ be a modular defined on X, and C be a nonempty subset in Xρ. We
denote by CLρ(C) the collection of all nonempty ρ-closed subsets of C, and by
CPρ(C) the collection of all nonempty ρ-compact subsets of C. Assume that
G = (V (G), E(G)) is a digraph on Xρ such that C ⊆ V (G).

Definition 5.3.1 ([7]). A multivalued mapping T : C → 2C is monotone Gρ-
nonexpansive if for any x, y ∈ C with (x, y) ∈ E(G) and any x1 ∈ T (x), there
exists y1 ∈ T (y) such that

(x1, y1) ∈ E(G), and ρ(x1 − y1) ≤ ρ(x− y).

In Definition 5.3.1, if we replace the digraph G with a partial order �, which
means for any x, y ∈ C with x � y and any x1 ∈ T (x), there exists y1 ∈ T (y) such
that

x1 � y1, and ρ(x1 − y1) ≤ ρ(x− y),

then T is said to be monotone ρ-nonexpansive.
A point c ∈ C is called a fixed point of T if and only if c ∈ T (c). The set of

all fixed points of a mapping T is denoted by Fix(T ).
Note that in some papers (see [8]), monotone Gρ-nonexpansive mappings are

also referred to as monotone increasing G-nonexpansive mappings.

Example 5.3.2. Consider the vector space R2 with Euclidean norm ‖(x1, x2)‖ =√
x2

1 + x2
2. By Example 5.1.3, ρ(x) = ‖x‖2 for any x ∈ R2 is a convex modular.

On R2, we define a digraph G = (V (G), E(G)) with V (G) = R2 and

(x, y) ∈ E(G)⇔ x1 ≤ y1
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for x = (x1, x2), y = (y1, y2) ∈ R2. Define the mapping T : R2 → 2R2
by

T (x) = {(z1, z2) ∈ R2 : x1 ≤ z1 ≤ x1 + 1} for x = (x1, x2) ∈ R2.

It is not difficult to prove that T is monotone Gρ-nonexpansive.

Definition 5.3.3. Let G = (V (G), E(G)) be a digraph on a modular space X.
We say that the digraph G is convex if for any x1, x2, y1, y2 ∈ V (G), and λ ∈ [0, 1],
we get

(x1, x2), (y1, y2) ∈ E(G)⇒
(
λx1 + (1− λ)y1, λx2 + (1− λ)y2

)
∈ E(G).

Note that if a transitive digraph G is convex then all G-intervals are convex.
Our first result concerns monotone Gρ-nonexpansive multivalued mappings

T : C → CLρ(C), where C is Gρ-compact.

Definition 5.3.4. We say that a nonempty subset C of Xρ is Gρ-compact if for
any sequence (xn)n in C such that (xn, xn+1) ∈ E(G) for any n ≥ 1, there exists
a subsequence (xnk)k of (xn)n which ρ-converges to x ∈ C.

In this definition, if we take the graph G to be a partial order �, then C is
said to be Pρ-compact.

It is clear that a ρ-compact set is Gρ-compact, but the converse is not neces-
sarily true.

Example 5.3.5. 1) Consider the set C = {(x1, x2) ∈ R2 : x1 ≤ 1,−1 ≤ x2 ≤
1} with modular function ρ(x) = x2

1 + x2
2 for x = (x1, x2) ∈ R2. Obviously,

C is ρ-closed. We define a graph G on R2 by

(x, y) ∈ E(G) if and only if x1 ≤ y1

for every x = (x1, x2), y = (y1, y2) ∈ R2. Then any sequence (zn)n ⊂ C such
that (zn, zn+1) ∈ E(G) for n ≥ 1 satisfies the following conditions:

z1
n ≤ 1,−1 ≤ z2

n ≤ 1 for every zn = (z1
n, z

2
n),

and z1
n ≤ z1

n+1 for every n ≥ 1.

It deduces that (zn)n is bounded in C. Thus C is Gρ-compact. It is easy to
see that C is not bounded, and hence not ρ-compact.

2) Consider the space C(I,R) in Example 2.1.11 and the modular function
ρ(x) = ‖x‖C. A digraph G is generated by partial order, which means

(f, g) ∈ E(G) ⇔ f(x) ≤ g(x) for all x ∈ [0, 1]

for every f, g ∈ C(I,R). For every n ≥ 1, put fn(x) = xn and gn(x) =
−(x/2)n for any x ∈ I. Let C = {fn, gn : n = 1, 2, . . .} ∪ {0}. Clearly,
C ⊂ C(I,R). It is not difficult to prove that C is Gρ-compact and ρ-bounded
but it is not ρ-compact.

We have the following lemma for Gρ-compact sets.
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Lemma 5.3.6. Let Xρ be a modular space, and C a subset of Xρ. Assume that
G is a transitive digraph in Xρ such that C ⊆ V (G) and G-intervals are ρ-closed.
Let (xn)n be a sequence in C satisfying the condition (xn, xn+1) ∈ E(G) for any
n ≥ 1. If C is Gρ-compact, then

⋂∞
n=1[xn,→)G 6= ∅.

Proof. Since C is Gρ-compact, there exists a subsequence (xnk)k of (xn)n which
ρ-converges to x ∈ C. Since the sequence (xnk)k is nondecreasing, we have that
for each k ≥ 1, xnm ∈ [xnk ,→)G for any m ≥ k. It follows from the closedness of
G-intervals that x ∈ [xnk ,→)G.

On the other hand, for each n ≥ 1, there exists k ≥ 1 such that nk ≥ n, and
thus (xn, xnk) ∈ E(G). It implies that x ∈ [xn,→)G for any n ≥ 1. Therefore,
x ∈

⋂∞
n=1[xn,→)G.

Theorem 5.3.7. Let ρ be a convex modular defined on X that satisfies the ∆2-
type condition. Assume that Xρ is complete. Let C be a nonempty Gρ-compact
ρ-bounded convex subset of Xρ. Assume that G is a transitive and convex digraph
in Xρ, and G-intervals are ρ-closed. Then any monotone Gρ-nonexpansive multi-
valued mapping T : C → CLρ(C) has a fixed point provided Cρ = {x ∈ C : (x, y) ∈
E(G) for some y ∈ T (x)} 6= ∅.

Proof. Assume that x0 ∈ Cρ. Hence there exists x′0 ∈ T (x0) such that (x0, x
′
0) ∈

E(G). Since C is convex, we can define the mapping T1 : C → CLρ(C) by

T1(x) =
1

2
x0 +

1

2
T (x) ∀x ∈ C.

Since x′0 ∈ T (x0), there exists y0 ∈ T1(x0) such that y0 = 1
2
x0 + 1

2
x′0. Since

G-intervals are convex and (x0, x
′
0) ∈ E(G), we have (x0, y0), (y0, x

′
0) ∈ E(G).

Since T is monotone Gρ-nonexpansive, there exists y′0 ∈ T (y0) such that

(x′0, y
′
0) ∈ E(G) and ρ(x′0 − y′0) ≤ ρ(x0 − y0).

Put

y1 =
1

2
x0 +

1

2
y′0.

Since y′0 ∈ T (y0), y1 ∈ T1(y0). Clearly, (x0, y1), (y1, y
′
0) ∈ E(G). Since G is convex,

(y0, y1) ∈ E(G), and

ρ(y1 − y0) ≤ 1

2
ρ(y0 − x0).

Since (y0, y1) ∈ E(G), there exists y′1 ∈ T (y1) such that

(y′0, y
′
1) ∈ E(G) and ρ(y′1 − y′0) ≤ ρ(y1 − y0).

Put

y2 =
1

2
x0 +

1

2
y′1.

Then we have y2 ∈ T1(y1), (y1, y2) ∈ E(G), and

ρ(y2 − y1) ≤ 1

2
ρ(y1 − y0) ≤ 1

22
ρ(y0 − x0).
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By induction we can form two sequence (yn)n and (y′n)n such that

yn+1 =
1

2
x0 +

1

2
y′n,

yn+1 ∈ T1(yn), (yn, yn+1) ∈ E(G),

y′n ∈ T (yn), (yn+1, y
′
n), (y′n, y

′
n+1) ∈ E(G) for every n ≥ 0,

and

ρ(y′n+1 − y′n) ≤ ρ(yn+1 − yn) ≤ 1

2
ρ(yn − yn−1) for every n ≥ 0.

Thus we have

ρ(y′n+1 − y′n) ≤ 1

2n+1
ρ(y0 − x0), ∀n ≥ 0.

By Lemma 5.1.8, (y′n)n is a Cauchy sequence. Since Xρ is complete, and C is
ρ-compact, there exists t1 ∈ C such that lim

n→∞
ρ(y′n − t1) = 0. Since ([y′n,→)

G
)n is

nonincreasing in Xρ, we have as in the proof of Lemma 5.3.6 that (y′n, t1) ∈ E(G)
for any n ≥ 0. Hence (x0, t1) ∈ E(G). Write

x1 =
1

2
x0 +

1

2
t1.

We have

ρ(yn+1 − x1) ≤ 1

2
ρ(y′n − t1),

and thus lim
n→∞

ρ(yn − x1) = 0. In the same way, we get (yn, x1) ∈ E(G) for any

n ≥ 0. Then there exists zn ∈ T1(x1) such that (yn+1, zn) ∈ E(G) and

ρ(zn − yn+1) ≤ 1

2
ρ(x1 − yn), ∀n ≥ 0.

By Lemma 5.1.9, we have

lim sup
n→∞

ρ(zn − yn+1) = lim sup
n→∞

ρ
(

(zn − x1)− (yn+1 − x1)
)

= lim sup
n→∞

ρ(zn − x1).

It is easy to prove that the sequence (zn)n also converges to x1. Since T1(x1) is ρ-
closed, we deduce that x1 ∈ T1(x1). Note that (x0, x1), (x1, t1) ∈ E(G), t1 ∈ T (x1),
thus x1 ∈ Cρ.

By induction, we can build two sequences (xn)n, (tn+1)n such that for each
n ≥ 0,

xn+1 =
1

n+ 2
xn +

(
1− 1

n+ 2

)
tn+1,

where tn+1 ∈ T (xn+1), and xn+1 is a fixed point of Tn+1, with Tn+1 : C → CLρ(C)
defined by

Tn+1(x) =
1

n+ 2
xn +

(
1− 1

n+ 2

)
T (x) ∀x ∈ C,

and (xn, xn+1), (tn+1, tn+2) ∈ E(G) for any n ≥ 0,
Since C is Gρ-compact, there exists a subsequence (xnk)k converging to t ∈ C.

Since the digraph G is transitive, we have (xnk , xnk+1
) ∈ E(G) for every k ≥ 0. It

implies that (xnk , t) ∈ E(G) for any k ≥ 0, and since G is transitive, (xn, t) ∈ E(G)
for any n ≥ 0.
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Moreover we have that

ρ(xn+1 − tn+1) ≤ 1

n+ 2
ρ(xn − tn+1) ≤ 1

n+ 2
diamρ(C)

for any n ≥ 0. Hence lim
n→∞

ρ(xn+1 − tn+1) = 0. By using similar argument as

above, the sequence (tnk)k converges to t.
Since T is monotone Gρ-nonexpansive and (xn, t) ∈ E(G), for every n ≥ 1

there exists wn ∈ T (t) such that (tn, wn) ∈ E(G) and

ρ(tn − wn) ≤ ρ(xn − t).

By Lemma 5.1.9, we deduce that

lim
k→∞

ρ(wnk − t) = 0.

Since T (t) is ρ-closed, we have t ∈ T (t), i.e., t ∈ Fix(T ).

In Theorem 5.3.7, if we equip X with a partial order, we have the following
theorem.

Theorem 5.3.8. Let ρ be a convex modular defined on X, and satisfies the ∆2-
type condition. Assume that Xρ is equipped with a partial order � such that order
intervals are ρ-closed. Let C be a nonempty Pρ-compact subset of Xρ. Then any
monotone ρ-nonexpansive multivalued mapping T : C → CLρ(C) has a fixed point
provided Cρ = {x ∈ C : x � y for some y ∈ T (x)} 6= ∅.

Proof. Take x0 ∈ Cρ. Then there exits y0 ∈ T (x0) such that x0 � y0. By
monotonicity of T , there exists y1 ∈ T (y0) such that

y0 � y1 and ρ(y1 − y0) ≤ ρ(y0 − x0).

By induction we can form a sequence (yn)n such that

yn � yn+1 and ρ(yn+1 − yn) ≤ ρ(yn − yn−1).

Since C is Pρ-compact, there exits a subsequence (ynk)k such that

lim
k→∞

ρ(ynk − c) = 0,

where c ∈ C. By the closedness of order intervals, we have

yn � c for every n ≥ 0.

Assume that t is an upper bound of (yn)n, then yn ∈ (←, t] for any n ≥ 0. Since
order intervals are ρ-closed, we get c ∈ (←, t], so that c � t. Thus we have
c = supn yn.

We are going to prove that lim
n→∞

ρ(yn− c) = 0. Indeed, assume that (yn)n does

not ρ-converge to x. Then there exists ε > 0 and a subsequence (ynl)l of (yn)n
such that

ynl /∈ V (c, ε) = {x ∈ Xρ : ρ(x− c) < ε} for any l ≥ 1. (5.3.1)

Dau Hong Quan 75



5.3. FIXED POINTS OF MONOTONE G-NONEXPANSIVE MULTIVALUED
MAPPINGS IN MODULAR SPACES

Since (ynl)l is nondecreasing, there exists a subsequence (ynlm )m of (ynl)l such that
lim
m→∞

ρ(ynlm − c1) = 0. In the same way, we have c1 = supn yn. Thus, c = c1. This

contradicts (5.3.1). Therefore, lim
n→∞

ρ(yn − c) = 0. Since yn � c for any n ≥ 0,

there exists zn ∈ T (c) such that

yn+1 � zn, ρ(yn+1 − zn) ≤ ρ(yn − c)

By Lemma 5.1.9, we get lim
n→∞

ρ(zn − c) = 0. Since T (c) is closed, c ∈ T (c).

Next we show a ‘modular’ version of Lim’s fixed point theorem (see [85]) for
monotone Gρ-nonexpansive multivalued mappings.

Theorem 5.3.9. Let ρ be a convex modular defined on X that satisfies the ∆2-type
condition and the Fatou property. Assume that Xρ is complete, and ρ is (UUC1).
Let C be a nonempty ρ-closed ρ-bounded convex subset of Xρ. Let G be a transitive
and convex digraph such that G-intervals are ρ-closed. Let T : C → CPρ(C) be a
monotone Gρ-nonexpansive multivalued mapping. If there exists x0 ∈ C such that
(x0, y0) ∈ E(G) for some y0 ∈ T (x0), then T has a fixed point.

Proof. Using the argument as in Theorem 5.3.7, we can construct two sequences
(xn)n and (yn)n such that yn ∈ T (xn) and

xn+1 =
1

n+ 2
xn +

(
1− 1

n+ 2

)
yn+1,

(xn, xn+1), (xn, yn), (yn, yn+1) ∈ E(G) for every n ≥ 0,

and
lim
n→∞

ρ(xn − yn) = 0.

Since (xn)n is nondecreasing, {[xn,→)G, n ≥ 0} is a nonincreasing sequence of
nonempty ρ-bounded ρ-closed convex subsets of X. It follows from Lemma 5.1.19
(b) that

C∞ =
⋂
n≥0

[xn,→)G ∩ C =
⋂
n≥0

{x ∈ C : (xn, x) ∈ E(G)} 6= ∅.

Now Lemma 5.1.13 implies the existence of a subsequence (xnk)k of (xn)n such
that for each subsequence (xnkl )l of (xnk)k we have

r(C∞, (xnkl )) = r(C∞, (xnk)).

From Theorem 5.1.22 there exists a unique c ∈ C∞ such that

lim sup
k→∞

ρ(xnk − c) = inf{lim sup
k→∞

ρ(xnk − x) : x ∈ C∞} = r(C∞, (xnk)).

Thus we have (xnk , c) ∈ E(G) for any k ≥ 1. Since T is a monotone Gρ-
nonexpansive multivalued mapping, there exists cnk ∈ T (c) such that

(ynk , cnk) ∈ E(G) and ρ(ynk , cnk) ≤ ρ(xnk , c)
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for any k ≥ 1. Since T (c) is ρ-compact, there exists a subsequence (cnkl )l of (cnk)k
such that lim

l→∞
cnkl = c′ ∈ T (c). First we prove that c′ ∈ C∞. Indeed, for each

n ≥ 1 and nkl ≥ n, we get

(xn, yn), (yn, ynkl ), (ynkl , cnkl ) ∈ E(G).

By the closedness of G-intervals, we deduce that

c′ ∈
⋂
n≥0

[xn,→)G.

Now, we are going to prove that c = c′. We have

ρ(xnkl −
c+ c′

2
) ≤ 1

2
ρ(xnkl − c) +

1

2
ρ(xnkl − c

′)

=
1

2
ρ(xnkl − c) +

1

2
ρ
(

(xnkl − ynkl ) + (ynkl − cnkl ) + (cnkl − c
′)
)
.

Taking upper limit as l→∞ and using Lemma 5.1.9, we get

lim sup
l→∞

ρ(xnkl −
c+ c′

2
) ≤ 1

2
lim sup
l→∞

ρ(xnkl − c) +
1

2
lim sup
l→∞

ρ(ynkl − cnkl )

≤ 1

2
lim sup
l→∞

ρ(xnkl − c) +
1

2
lim sup
l→∞

ρ(xnkl − c)

= lim sup
l→∞

ρ(xnkl − c) ≤ lim sup
k→∞

ρ(xnk − c) = r(C∞, (xnk)).

Since C∞ is nonempty ρ-bounded ρ-closed convex, we have

lim sup
l→∞

ρ(xnkl −
c+ c′

2
) ≥ r(C∞, (xnkl )).

Thus

r(C∞, (xnk)) = r(C∞, (xnkl )) ≤ lim sup
l→∞

ρ(xnkl −
c+ c′

2
) ≤ r(C∞, (xnk)).

Hence

r(C∞, (xnkl )) = lim sup
l→∞

ρ(xnkl −
c+ c′

2
) = r(C∞, (xnk)). (5.3.2)

On the other hand, we have

r(C∞, (xnkl )) ≤ lim sup
l→∞

ρ(xnkl − c) ≤ lim sup
k→∞

ρ(xnk − c) = r(C∞, (xnk)). (5.3.3)

Combining 5.3.2 with 5.3.3 and using Theorem 5.1.22 (c), we have c = (c+ c′)/2,
i.e., c = c′. Therefore, c is a fixed point of T .
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